期刊文献+

基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型 被引量:7

Evaluation of Land Surface Polarization Models Based on Airborne Advanced Atmosphere Multi-Angle Polarization Radiometer Measurements
原文传递
导出
摘要 运用新研制的大气多角度偏振辐射计(AMPR)获得航空遥感数据并结合实验室测量数据对常用的三种地表偏振模型进行评估,分析地表偏振反射率的波段响应和角度响应特征。实验发现偏振反射率对波段变化的响应很小,该结论得到85%以上飞行数据的气溶胶反演结果支持。实验室数据中,波长变化1nm的黄棕壤和红沙土的偏振反射率改变量仅分别为2.43×10-6和1.47×10-6。在角度响应特征上,三种模型都与实验数据符合得很好,高植被覆盖率时三种模型与实际测量数据的偏差较小。分别对三种模型的航空数据进行拟合,Nadal和Bréon(NB)开发的地表偏振反射率模型与飞行数据符合得最好,拟合偏差约是其他两个模型的一半,NB模型能够更精确地描述地表偏振反射的特性。 Three models of land surface polarized reflectance are evaluated using data obtained from newly developed advanced atmosphere multi-angle polarization radiometer (AMPR) and laboratory. The spectral and angular responses are analyzed. It is found that the spectral response is very little, and 85 % of AMPR aerosol retrievals support the result. For the data from laboratory, the changes of polarized reflectance of yellow brown soil and red sandy soil are just 2.43 ×10-6 and 1.47 × 10^-6 as the wavelength changes 1 nm. Angular responses of all three models match the measured data well with less difference between the high vegetation coverage data and models. After fitted, the model developed by Nadal and Brfion (NB) agrees with the measurements best, and the difference is about 1/2 of the other two models. NB model can describe the surface polarization more exactly.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第1期244-251,共8页 Acta Optica Sinica
基金 国家大科学工程航空遥感系统 中国科学院重点资助项目(KGFZD-125-13-006)
关键词 遥感 大气多角度偏振辐射计 航空测量 地表偏振反射率 remote sensing atmosphere multi-angle polarization radiometer~ airborne measurement~ land surfacepolarized reflectance
  • 相关文献

参考文献9

二级参考文献102

共引文献138

同被引文献46

  • 1张小曳.中国大气气溶胶及其气候效应的研究[J].地球科学进展,2007,22(1):12-16. 被引量:163
  • 2Deschamps P Y, Bron F M, Leroy M, et al.. The POLDER mission: instrument characteristics and scientific objectives[J]. Geoscience Remote Sensing, IEEE Transactions, 1994, 32(3): 598-615.
  • 3Diner D J, Davis A, Hancock B, et al.. First results from a dual photoelastic-modulator-based polarimetric camera[J]. Appl Opt, 2010, 49(15): 2929-2946.
  • 4Van Harten G, Snik F, Rietjens J H H, et al.. Prototyping for the spectropolarimeter for planetary exploration (SPEX): calibration and sky measurements[C]. SPIE, 2011, 8160: 81600Z.
  • 5Cairns B, Russell E E, La Veigne J D, et al.. Research scanning polarimeter and airborne usage for remote sensing of aerosols[C]. SPIE, 2003, 5158: 33-44.
  • 6Peralta R J, Nardell C, Cairns B, et al.. Aerosol polarimetry sensor for the Glory mission[C]. SPIE, 2007, 6786: 67865L.
  • 7Schott J R. Fundamentals of Polarimetric Remote Sensing[M]. SPIE Press, 2009: 33-63.
  • 8Wakaki M, Shibuya T, Kudo K. Physical Properties and Data of Optical Materials[M]. CRC Press, 2010: 353.
  • 9Breon F M, Tanre D, Lecomte P and Herman M. 1995. Polarized reflec- tance of bare soils and vegetation : measurements and models. IEEE Transactions on Geoscience and Remote Sensing, 33 ( 2 ) : 487 - 499 [ DOI: 10. 1109/36. 377949].
  • 10Cairns B, Russell E E, LaVeigne J D and Tennant P M W. 2003. Research scanning polarimeter and airborne usage for remote sensing of aerosols//Proceedings of SPIE 5158, Polarization Science and Remote Sensing. San Diego, California, USA: SPIE: 33- 44 [ DOI: 10. 1117/12. 518320].

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部