摘要
A graph is called edge-transitive if its full automorphism group acts transitively on its edge set.In this paper,by using classification of finite simple groups,we classify tetravalent edge-transitive graphs of order p2q with p,q distinct odd primes.The result generalizes certain previous results.In particular,it shows that such graphs are normal Cayley graphs with only a few exceptions of small orders.
A graph is called edge-transitive if its full automorphism group acts transitively on its edge set.In this paper,by using classification of finite simple groups,we classify tetravalent edge-transitive graphs of order p2q with p,q distinct odd primes.The result generalizes certain previous results.In particular,it shows that such graphs are normal Cayley graphs with only a few exceptions of small orders.
基金
supported by National Natural Science Foundation of China (Grant Nos.11071210 and 11171292)