期刊文献+

小波包熵在水下目标识别中的应用研究 被引量:4

Application study on underwater target recognition based on wavelet packet entropy
下载PDF
导出
摘要 研究了基于小波包变换和Fisher线性分类器的水下目标识别方法。小波包是在小波变换的基础上发展起来的时频分析方法,能够对非平稳信号提供更丰富的时频信息。通过对水下目标辐射噪声信号进行小波包分解,提取小波包分解的终端节点的熵值作为特征矢量,应用Fisher线性分类器设计的分段线性分类器对水下目标进行分类识别。仿真结果表明,以小波包熵作为特征矢量的分类方法具有较高的识别正确率。 A method for underwater target recognition based on wavelet packet transform and fisher linear classifier is studied. On the basis of wavelet transform, the wavelet packet transform is developed. It can offer plentiful time-frequency information for nonstationary signals. Firstly, the radiated noise of underwater target is decomposed by wavelet packet. Secondly, the entropy of terminal nodes through wavelet packet is served as feature vectors. Lastly, the piecewise linear classifier which is designed based on Fisher linear classifier is applied for underwater target recognition. Simulation results show that the classification method which uses wavelet packet entropy as feature vectors possesses higher recognition cor-rect ratio.
作者 石敏 徐袭
出处 《计算机工程与应用》 CSCD 2014年第1期215-217,231,共4页 Computer Engineering and Applications
关键词 目标识别 小波包变换 小波包熵 Fisher线性分类器 分段线性分类器 target recognition wavelet packet transform wavelet packet entropy Fisher linear classifier piecewise lin-ear classifier
  • 相关文献

参考文献6

二级参考文献36

共引文献111

同被引文献28

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部