期刊文献+

一种新的基于图像的路径压缩优化方法及其在数字岩心中的应用 被引量:2

A New Path Reduction Method Using in the Process of Numerical Rock Image Recognization
下载PDF
导出
摘要 针对并查集方法进行图像连通区域识别过程中,数据量大,时间复杂度高等问题,提出一种基于路径压缩理论的"标签吸收"方法;它能够使查找树的高度和时间复杂度降低,并且仅需一次扫描就可以对整个图像的连通区域完成识别。详细论述了整个方法的实现过程,并将其应用于油气田开发领域数字岩心微观图像识别中。结果表明该优化方法准确、可行。 In the process of image regional recognition process, the set method has some problems such as large data volume, high time complexity, Here a theory based on path reduction " label absorption" approach is proposed. This method can reduce the height of the search tree and reduce the time complexity. And it just needs to scan the image for one time to complete the identification of regional connectivity. The whole process of implementation of the method and application in oil and gas development is discussed in detail. And good results is have beem achieved.
出处 《科学技术与工程》 北大核心 2013年第36期10863-10866,共4页 Science Technology and Engineering
基金 国家自然科学基金(11072268 51234007) 教育部科学技术研究重大项目(311009) 高等学校博士学科点专项科研基金课题(20120133120017) 山东省自然科学基金(ZR2011EEQ002) 中央高校基本科研业务费专项资金(11CX04022A) 高等学校学科创新引智计划(B08028) 长江学者和创新团队发展计划(IRT1294)资助
关键词 三维图像 并查集 路径压缩 图像识别 数字岩心 3D image union-find pathreduction image recognization numerical rock
  • 相关文献

参考文献9

  • 1Liang X, Jacobs R, Hassan B. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) :Part I. On subjective image quzdity. European journal of radiology, published by Elsevier. 2010,75 (2) : 265-269.
  • 2Wayne K. Union-find algorithms. Elsevier, 2012.
  • 3Tarjan R E. Theory vs. practice in the design and analysis of algo- rithms. Algorithms and Data Structures. Springer, 2011 : 703-703.
  • 4Blewitt G. Fixed point theorems of GPS carrier phase ambiguity reso- lution and their application to massive network processing: ambizap. Journal of Geophysical Research, 2008 ; 113 ( B12 ) : 10-12.
  • 5何东晓,周栩,王佐,周春光,王喆,金弟.复杂网络社区挖掘—基于聚类融合的遗传算法[J].自动化学报,2010,36(8):1160-1170. 被引量:58
  • 6Lewenstein M, Munro J I, Raman V. Succinct data structures for re- presenting equivalence classes. ArXiv Preprint ArXiv, 2013;6 (1) : 161-169.
  • 7Osipov V, Sanders P, Singler J. The fiher-kruskal minimum span- ning tree algorithm: proceedings of the ALENEX, IF1P TCS, Tou- louse, In IEIP, Toulhouse ,2009.
  • 8Nicolae M, Mangul S, Mandoiu I I, lynnetwwwdagriorglynnet. Esti- mation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms for Molecular Biology, 2011 ;6( 1 ) : 9-11.
  • 9Stojkovic G, Jovanovic D, Stankovic A, et al. Patients with paroxys- mal atrial fibrillation and Achman phenomenon. Apollinem Medicum et Aesculapium, 2010;8(2): 9-12.

二级参考文献32

  • 1Porter M A, Onnela J P, Mucha P J. Communities in networks. Notices of the American Mathematical Society, 2009, 56(9): 1082-1097, 1164-1166.
  • 2Watts D J, Strogatz S H. Collective dynamics of 'small- world' networks. Nature, 1998, 393(6638): 440-442.
  • 3Albert R, Jeong H, Barabasi A L. The internet's achilles' heel: error and attack tolerance of complex networks. Nature, 2000, 406(2115): 378-382.
  • 4Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
  • 5Li J, Cheung W K, Liu J M, Li C H. On discovering community trends in social networks. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology. Washington D. C., USA: IEEE, 2009. 230-237.
  • 6Guimerk R, Amaral L A N. Functional cartography of complex metabolic networks. Nature, 2005, 433(7028): 895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818.
  • 8Hu Y Q, Li M H, Zhang P, Fan Y, Di Z R. Community detection by signaling on complex networks. Physical Review E, 2008, 78(1): 016115.
  • 9Palla G, Barabasi A L, Vicsek T. Quantifying social group evolution. Nature, 2007, 446(7136): 664-667.
  • 10Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 2007, 76(3): 036106.

共引文献57

同被引文献26

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部