期刊文献+

基于波形选择的MIMO雷达三维稀疏成像与角度误差校正方法 被引量:5

Three Dimensional MIMO Radar Imaging Using Sparse Model Based on Waveform Selection and Calibration Method in the Presence of Angle Imperfections
下载PDF
导出
摘要 该文研究稀疏目标场景下,波形选择对基于压缩感知理论的MIMO雷达成像效果的影响并提出一种改进的成像角度误差校正方法。首先分析了模糊函数和压缩感知匹配字典的相关系数之间的关系;然后,在空间小角度域情况下,针对成像场景中的角度误差,提出一种改进的基于迭代最小化的稀疏学习(SLIM)算法进行校正。仿真结果表明,选择具有较低旁瓣模糊函数的发射波形可以提高成像质量,改进的SLIM算法可以有效补偿角度误差。 The effect of waveform selection on compressive sensing MIMO radar imaging using sparse model and an improved calibration method in the presence of angle imperfections are researched in this paper. Firstly the relationship between ambiguity function and Compressive Sensing (CS) “dictionary coherence coefficient” is analyzed. Then, in the presence of small spatial angle, an improved method based on“Sparse Learning via Iterative Minimization”(SLIM) algorithm is proposed to calibrate angle errors. Simulation results illustrate that the imaging quality can be enhanced when selected waveforms have low sidelobes and prove that the modifed method can calibrate angle errors effectively.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第2期428-434,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271292) 国家973计划项目(2010CB731903) 西安电子科技大学基本科研业务费(k50511020003)资助课题
关键词 MIMO雷达 稀疏成像 波形选择 角度误差校正 基于迭代最小化的稀疏学习(SLIM) MIMO radar Imaging using sparse model Waveform selection Angle imperfections calibration Sparse Learning via Iterative Minimization (SLIM)
  • 相关文献

参考文献2

二级参考文献27

  • 1Narayanan R M, Xu Y, Hoffmeyer P D, and Curtis J O. Design, performance, and applications of a coherent ultra wide-band random noise radar [J]. Optical Engineering, 1998, 37(6): 1855-1869.
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289 1306.
  • 3Baraniuk R G and Steeghs P. Compressive radar imaging [C]. IEEE Radar Conference, Boston, MA, USA, Apr.17-20, 2007 128-133.
  • 4Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 5Candes E J and Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 6Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors [J]. IEEETransactions on Image Processing, 2010, 19(1): 53-63.
  • 7Candes E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes rendus del Cademie des Sciences, Scriel, 2008, 346(9-10): 589-592.
  • 8Baraniuk R G, Davenport M A, DeVote R, and Wakin M B. A simple proof of the restricted isometry property for random matrices [J]. Constructive Appro:rimation, 2008, 28(3): 253-263.
  • 9Tropp J A, Laska J N, Duarte M F, Romberg J K, and Baraniuk R G. Beyond Nyquist: efficient sampling of sparse bandlimited signals [J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544.
  • 10Cetin M and Karl W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Transactions on Image Processing, 2001, 10(4): 623-631.

共引文献36

同被引文献80

  • 1Donoho D L. Compressed sensing[J]. IEEE Trans- actions on Information Theory, 2006, 52 (4): 1289-1306.
  • 2Candts E J, Romberg J, Tao T. Robust uncertainty principles, Exact signal reconstruction from highly.incomplete frequency information"J]. IEEE Transac- tions on Information Theory, 2006, 52(2) : 489-509.
  • 3Cand~s E J. Compressive sampling['J]. Proceedings of the International Congress of Mathematicians, Marta Sanz So16, 2006,17(2): 1433-1452.
  • 4Gan L. Block compressed sensing of natural images [C']. USA.. IEEE, 2007: 403-406.
  • 5Baraniuk R G. Compressive sensing ~J]. IEEE Sig- nal Processing Magazine, 2007, 24(4).. 118-121.
  • 6Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images ['J]. Nature, 1996, 381 (6583).607-609.
  • 7Mallat S G, Zhang Z. Matching pursuits with time- frequency dictionaries [-J]. Signal Processing, IEEE Transactions on, 1993, 41(12): 3397-3415.
  • 8Tropp J A, Gilbert A C. Signal recovery from ran- dom measurements via orthogonal matching pursuit [-J-]. Information Theory, IEEE Transactions on, 2007, 53(12): 4655-4666.
  • 9Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuitrJ3. Informa- tion Theory, IEEE Transactions on, 2012, 58 (2) : 1094-1121.
  • 10Needell D, Vershynin R. Uniform uncertainty princi- ple and signal recovery via regularized orthogonal matching pursuit[J-]. Foundations of computational mathematics, 2009, 9(3): 317-334.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部