期刊文献+

一种离散细菌菌落优化算法研究 被引量:3

A Discrete Bacterial Colony Optimization Algorithm
下载PDF
导出
摘要 为了拓宽智能优化算法解决实际问题的能力,提出一种离散的细菌菌落优化算法。首先,设计新的个体编码方式以及进化方式;其次,融合禁忌搜素算法,克服算法易陷入早熟的不足;最后,与其它算法在Taillard标准调度测试问题集上比较实验,验证了算法的有效性。仿真表明,算法能够寻求到问题的最优组合。 This paper presents a discrete bacterial colony optimization algorithm (DBCO) in order to broaden the intelligent optimization algorithms to solve practical problems . Firstly, a new coding mode and evolution pattern are designed. And then in order to overcome the algorithm irritable fall in convergence by merged into taboo search. Finally, verify the effec- tiveness of the algorithm by comparison with other well-performed algorithms on Taillard's benchmark problems. Numer- ical simulation shows that the new algorithm can search to their optimal combination.
出处 《软件导刊》 2013年第12期52-54,共3页 Software Guide
基金 国家自然科学基金项目(31100424) 云南省自然科学基金项目(2009CD070) 云南省教育厅科学研究基金项目(2012J047)
关键词 智能优化 离散优化算法 细菌菌落 禁忌搜索 Intelligence Algorithm Discrete Optimization Algorithm Bacterial Colony Tabu Search
  • 相关文献

参考文献8

  • 1PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J].{H}IEEE Control Systems Magazine,2002,(03):52-67.doi:10.1109/MCS.2002.1004010.
  • 2ULAGAMMAI L,VANKATESH P,KANNAN P S. Appli-cation of bacteria foraging technique trained and artificial and waveletneural networks in load forecasting[J].{H}NEUROCOMPUTING,2007,(16-18):2659-2667.
  • 3KIM H D,CHO H J. Adaptive tuning of PID controller for multi-variable system using bacterial foraging based optimization[A].New York:IEEE,2005.231-235.
  • 4MAJHI R,PANDA G,SAHOO G. Stock market prediction of S and P 500 and DJIA using Bacterial Foraging Optimization technique[A].New York:IEEE,2007.2569-2575.
  • 5崔静静,孙延明,车兰秀.改进细菌觅食算法求解车间作业调度问题[J].计算机应用研究,2011,28(9):3324-3326. 被引量:16
  • 6易军,李太福.求解作业车间调度的变邻域细菌觅食优化算法[J].机械工程学报,2012,48(12):178-183. 被引量:17
  • 7李明,杨成梧.细菌菌落优化算法[J].控制理论与应用,2011,28(2):223-228. 被引量:26
  • 8TAILLARD E. Benchmarks for Basic Scheduling Problems[J].{H}European Journal of Operational Research,1993,(64):278-285.

二级参考文献47

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2陶泽,谢里阳,郝长中,梁迪.基于混合遗传算法的车间调度问题的研究[J].计算机工程与应用,2005,41(18):19-22. 被引量:11
  • 3熊禾根,李建军,孔建益,杨金堂,蒋国璋.考虑工序相关性的动态Job shop调度问题启发式算法[J].机械工程学报,2006,42(8):50-55. 被引量:33
  • 4丁书斌,李启堂,徐继涛,王敏.混合遗传算法求解经典作业车间调度问题[J].煤矿机械,2007,28(1):22-24. 被引量:6
  • 5PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52 - 67.
  • 6MULLER S D, MARCHETTO J, AIRAQHI S, et al. Optimization based on bacterial chemotaxis[J]. IEEE Transactions on Evolutionary Computation, 2002, 60): 16 - 29.
  • 7ABRAHAM A, BISWAS A, DASQUPTA S, et al. Analysis of reproduction operator in bacterial foraging optimization algorithm[C] //Proceedings of 2008 IEEE Conference on Evolutionary Computa- tion. New York: IEEE, 2008:1476 - 1483.
  • 8KIM H D, ABRAHAM A, CHO H J. A hybrid genetic algorithm and bacterial foraging approach for global optimization[J]. Information Sciences, 2007, 17(18): 3918- 3937.
  • 9BISWAS A, DASQUPTA S, DAS S, et al. A synergy of differential evolution and bacterial foraging optimization for global optimization[J]. Neural Network World, 2007, 17(6): 607 - 626.
  • 10KIM H D, CHO H J. Adaptive tuning of PID controller for multivariable system using bacterial foraging based optimization[C]//Proceedings of 3rd International Atlantic Web Intelligence Conference on Advances in Web Intelligence. New York: IEEE, 2005:231 -235.

共引文献53

同被引文献33

  • 1蒋忠中,汪定伟.物流配送车辆路径优化的模糊规划模型与算法[J].系统仿真学报,2006,18(11):3301-3304. 被引量:33
  • 2刘健,武晓朦,余健明.考虑负荷不确定性和相关性的配电网络重构[J].电工技术学报,2006,21(12):54-59. 被引量:13
  • 3徐杰,黄德先.基于混合粒子群算法的多目标车辆路径研究[J].计算机集成制造系统,2007,13(3):573-579. 被引量:31
  • 4FALAGHI H,HAGHIFAM M R.ACO based algorithm for distributed generation sources allocation and sizing in distribution systems[C]//Power Tech,2007 IEEE Lausanne,2007:555-560.
  • 5OUAFA H,NADHIR K,LINDA S,et al.Optimal power flow with emission controlled using firefly algorithm[C]//ICMSAO Tunisia,IEEE,2013:978-1-4673-5814-9/13.
  • 6LI Ming.A novel swarm intelligence optimization inspired by evolution process of a bacterial colony[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation,Beijing,China,July 6-8,2012:450-453.
  • 7上海理工大学.电力系统无功优化的细菌菌落优化算法:中国,201310140845.6[P].2013-04-22.
  • 8KRUEASUK W,ONGSAKUL W.Optimal placement of distributed generation using particle swarm optimization[C]//Proceedings of IEEE Porto Power Technology,2005.
  • 9Li Ming.A novel swarm intelligence optimization inspired by evolution process of a bacterial colony[J].Proceedings of the 10th World Congress on Intelligent Control and Automation Beijing,China,2012:50-53.
  • 10简献忠,周海,李莹,等.电力系统无功优化细菌菌落算法[P].中国专利.201310140845.6,2013.04.02.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部