期刊文献+

基于SVM方法的SPOT-5影像植被分类 被引量:10

Vegetation Extraction in SPOT5 Image with SVM Method
下载PDF
导出
摘要 运用SPOT-5全色和多光谱影像,采用支持向量机(SVM)法对森林植被进行分类研究,探讨了SVM法的分类能力以及纹理信息在森林植被分类中的影响。结果表明:Gram-Schmidt光谱锐化法是北京山区SPOT-5影像最佳的融合方法;SVM法在高分辨率影像森林植被分类中精度较高,不同核函数对分类精度的影响不显著;基于灰度共生矩阵产生的纹理信息能够提高SVM法的分类精度,3×3窗口是提高分类精度的最佳纹理窗口。 The experiment was conducted to classify the forest vegetation with support vector machine (SVM) method based on SPOT-5 panchromatic and multispectral images and explore the ability with SVM method and the effect by texture informa-tion in forest vegetation classification .Gram-Schmidt spectral sharpening method is the best fusion method forSPOT -5 im-age in Beijing mountain areas.SVM method has higher classification accuracy with the fine resolution images in the forest vegetation extraction.There is no significant difference on classification accuracy with different kernel functions.Image texture information from Gray level co-occurrence matrix ( GLCM) method can improve the classification accuracy by SVM method, and the best texturewindow of ×3 windows can improve the classification accuracy obviously.
出处 《东北林业大学学报》 CAS CSCD 北大核心 2014年第1期51-56,共6页 Journal of Northeast Forestry University
基金 国家"863"计划课题(2012AA102001-5) 教育部高等学校博士学科点专项科研基金资助课题(20100014110002)
关键词 影像融合 Gram-Schmidt光谱锐化法 灰度共生矩阵 支持向量机 植被分类 Image fusion Gram-Schmidt spectral sharpening method Gray level co-occurrence matrix (GLCM) Support vector machine (SVM) Vegetation extraction
  • 相关文献

参考文献24

二级参考文献100

共引文献526

同被引文献133

引证文献10

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部