期刊文献+

基于概念格中紧致依赖的空间数据挖掘方法研究 被引量:1

SPATIAL DATA MINING METHOD BASED ON COMPACT DEPENDENCIES IN CONCEPT LATTICE
下载PDF
导出
摘要 解决空间数据挖掘的关联规则提取问题。通过应用GIS(Geographic Information System)即地理信息系统,获得空间数据信息,并将空间数据构造概念格,使空间数据和概念格的形成、分析过程统一起来。以"紧致依赖"方法作为主要数据挖掘手段,并在此基础上提出一种基于Apriori剪枝的"紧致依赖"约减方法,从而方便快捷找出满足支持度阈值并且置信度为1的所有关联规则。 The article focuses on solving the problems of spatial data mining and association rules extraction.By applying GIS (geographic information system),we obtain the information of spatial data and use the data to construct concept lattice,which makes the formation and analysis process in regard to spatial data and concept lattice to be unified.We use the compact dependence as the main means of data mining, and on this basis propose an Apriori pruning-based compact dependent reduction algorithm,therefore conveniently and efficiently find out all the association rules meeting the support threshold and with confidence degree of 1 as well.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第2期33-36,139,共5页 Computer Applications and Software
关键词 紧致依赖 概念格 GIS GIS Compact dependency Concept lattice
  • 相关文献

参考文献11

  • 1Raymond T Ng, Jiawei Han. Efficient and effective clustering methods for spatial data mining [C]//Proc. of The V1 db Conference, 1994 (9) :143 -164.
  • 2石云,孙玉方,左春.空间数据采掘的研究与发展[J].计算机研究与发展,1999,36(11):1301-1309. 被引量:21
  • 3Devogele T, Parent C, Spaccapietra S. On spatial database integration [ J]. International Journal of Geographical Information Science, 1998, 12(4) :335 -352.
  • 4Wille R. Restructuring lattice theory:an approach based on hierarchies of concepts [ M ]. Ordered Sets. DordrechtBoston: Reidel, 1982 : 445 - 470.
  • 5Claudio C, Giovanni R. Concept data analysis:theory and applications [ M ]. Chichester, John Wiley & Sons, Ltd. 2004.
  • 6Francisco J Valverde-Albacete, Carmen Pelaez-Moreno. Towards a gen- eralisation of formal concept analysis for data mining purposes [ C ]// Formal Concept Analysis-4th International Conference, ICFCA 2006, Dresden, Germany, Springer,2006 : 161 - 176.
  • 7Bernhard G, Rudolf W. Formal concept analysis [ M ]. Springer, 1999 : 79 - 80.
  • 8马垣,张学东,迟呈英.紧致依赖与内涵亏值[J].软件学报,2011,22(5):962-971. 被引量:13
  • 9Agrawal R, Mielnskit, Swamia. Mining association rules between sets of items in large database[ C ]//Proc of the ACM SIGMOD Intl Conf on Management of Data. Washington, 1993:207 - 216.
  • 10Chelghoum N, Zeitouni K, Boulmakoul A. A decision tree for multi-Lay- ered spatial data[ C ]//Ottawa, Canada. Proceedings of the 10th Inter- national Symposium on Spatial Data Handling,2002:1-11.

二级参考文献19

  • 1Ma Y. Database Theory. In: New Advancement of Database Technology. 2nd ed., Beijing: Tsinghua University Press, 2007.24-44.
  • 2Tsumoto S. Medical reasoning and rough sets. In: Kryszkiewicz M, et al., eds. Proc. of the Int'l Conf. on Rough Sets and Intelligent Systems Paradigms. New York: Springer-Verlag, 2007.90-101. [doi: 10.1007/978-3-540-73451-2_11].
  • 3Ganter B, Wille R. Formal Concept Analysis Mathematical Foundations. Berlin: Springer-Verlag, 1999.62-75.
  • 4Marmila H, Raibba KJ. On the complexity of inferring functional dependencies. Discrete Applied Mathematics, 1992,40(2): 237-243. [doi: 10.1016/0166-218X(92)90031-5].
  • 5Guigues J, Duquenne V. Families Minimales d'implications Informatives Resultants d'un Tableau de Donnees Binaires. Mathematics and Social Sciences, 1986. 495-518.
  • 6Ullman JD. Principles of Database Systens. 2nd ed., New York: Computer Science Press, 1982.218-220.
  • 7Valtchev P, Missaoui R, Godin R. Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Garbonell JG, Siekmann J, eds. Proc. of the Int'l Conf. on Concept Analysis (ICFCA 2004). New York: Springer-Verlag, 2004. 252-271. [doi: 10.1007/978-3-540-24651-0_30].
  • 8Eiter T, Gottlob G. Identifying the minimal transversals of a hypergraph and related problems. SIAM Journal on Computing, 1995, 24(6):1278-1340. [doi: 10.1137/S0097539793250299].
  • 9Ma Y, Gong X, Tang XM, Dong H. Discovering knowledge of increase or decrease and knowledge of circle in relational database. In: Chinese Association for Artificial Intelligence, ed. Proc. of the 2007 National Conf. on Artificial Intelligence (CAAI-12). Beijing: Beijing University of Posts and Telecommunications Publishing House, 2007. 283-289.
  • 10Alachaher LN, Guillaume S. Mining negative and positive influence rules using Kullback-Leibler divergence. In: Proc. of the ICCGI 25. 2007. http://www.lw20.com/201007279930812.html.

共引文献32

同被引文献16

  • 1Kwon D, Lee S, Lee S. Indexing the Current Positions of Moving Objects Using the Lazy Update R-tree [ C ]//Proc. of Mobile Data Management (MDM2002). Jan. 2002.
  • 2Lee M L,Hsu W,Jensen C S,et al. Supporting Frequent Updates in R- Trees : A Bottom-Up Approach [ C ]/!Proc. of VLDB,2003.
  • 3Xiong X, Walid G Aref. R-Tree with Update Memos[ C]//22nd Inter- national Conference on Data Engineering (ICDE'06) , Atlanta, Georgia April 03-April 07. 2006.
  • 4Xiaopeng Xiong, Mohamed F Mokbel, Walid G Aref. LUGrid: Update- tolerant Grid-based Indexing for Moving Objects [ C ]//Prec. MDM, 2006:13.
  • 5Bin Lin, Jianwen Su. Handling Frequent Updates of Moving Objects [ C ]//Prec. of the 14th ACM International CIKM. Bremen, Germany: IEEE Press ,2005.
  • 6Tao Y, Papadias D, Sun J. The TPR * -Tree: An Optimized Spatio- Temporal Access Method for Predictive Queries [ C ]//Prec. VLDB. 2003. San Francisco,2003 : 790 - 801.
  • 7Jensen C S, Lin D, Ooi B C. Query and Updale Efficient B -Tree Based Indexing of Moving Objects[ C]//Prec VLDB. 2004:768 -779.
  • 8Yiu M L, Tao Y, Mamoulis N. The Ba'-Tree: Indexing Mong Objects by Space-Filling Curves in the Dual Space [ C ]//VLDB Journal. 2006, 17(3) :379-400.
  • 9Kim K S, Kim S, Kim T, et . Fast indexing and updating method for moving objects on read networks [ C ]//Proc WISEW. 2003.
  • 10Chen J, Meng X, Guo Y, et al. Update-efficient Indexing of Moving Ob- jects in Road Networks[ C]//Proceedings of the Third Workshop on Spatio-Temporal Database Management in conjunction with VLDB 06 (VLDB-STDBM2006) , Seoul, Korea, September 11,2006.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部