期刊文献+

基于粗糙集离散化的多频带脑电特征选择方法的研究 被引量:2

The rough set-Discretization algorithm based feature selection for Brain-Computer Interface
下载PDF
导出
摘要 不同的受试在进行运动想象时,脑电模式在频带分布上的差异较大,只有找到特定受试的有效特征,才能得到较好的实验效果。文中结合共同空间模型和粗糙集离散化算法的特征选择方法,来选取受试左右手运动想象的多频带脑电特征。与单频带特征相比,文中提出的方法提取的多频带脑电特征,能够有效的剔除了冗余特征量的干扰。实验结果表明(五位受试),文中提出的方法可以有效提高分类准确率。 The electroencephalogram features of Motor imagery vary considerably for different subjects. To achieve good performance of brain-computer interface, it is necessary to choose the features for specific subject. In this paper, we applied rough set based discretization algorithm to select feature from the feature vector of filter bank common spatial pattern. Comparing with single frequency band feature of common spatial pattern, the experimental results (Five subjects participated) show proposed method obtains better performance.
作者 吴金玲
出处 《电子设计工程》 2014年第1期4-5,10,共3页 Electronic Design Engineering
关键词 脑—机接口 粗糙集理论 离散化算法 共同空间模型 brain-computer interface rough set theory discretization algorithm common spatial pattern
  • 相关文献

参考文献8

  • 1Wolpaw J R,McFarland D J,Vaughan T M. The Wadsworth Center brain-computer interface(BCI)research and development program[J].Neural Systems and Rehabilitation Engineering IEEE Transactions on,2003,(2):1-4.
  • 2Pfurtscheller G,Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization:basic principles[J].{H}CLINICAL NEUROPHYSIOLOGY,1999,(11):1842-1857.
  • 3Pfurtscheller G,Neuper C. Motor imagery and direct braincomputer communication[J].{H}PROCEEDINGS OF THE IEEE,2001,(7):1123-1134.
  • 4Blankertz B,Dornhege G,Krauledat M. The non-invasive BerlinBrain-Computer Interface:Fast acquisition of effective performance in untrained subjects[J].{H}NEUROIMAGE,2007,(2):539-550.
  • 5Novi Q,Guan C,Dat T H. Sub-band common spatial pattern(SBCSP)for brain-computer interface[A].{H}IEEE,2007.204-207.
  • 6Aug K K,Chin Z Y,Zhang H. Filter bank common spatial pattern (FBCSP) in brain-computer interface[A].{H}IEEE,2008.2390-2397.
  • 7谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 8Xia B,Zhang Q,Xie H. A Neurofeedback training paradigm for motor imagery based Brain-Computer Interface[A].{H}IEEE,2012.1-4.

二级参考文献16

  • 1Nguyen S.H., Nguyen H.S.. Some efficient algorithms for rough set methods. In: Proceedings of the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, 1996, 1451~1456.
  • 2Susmaga R.. Analyzing discretizations of continuous attributes given a monotonic discrimination function. Intelligent Data Analysis, 1997, 1(4): 157~179.
  • 3Dai Jian-Hua, Li Yuan-Xiang. Study on discretization based on rough set theory. In: Proceedings of the first International Conference on Machine Learning and Cybernetics, Beijing, 2002, 1371~1373.
  • 4Chen Cai-Yun, Li Zhi-Guo, Qiao Sheng-Yong, Wen Shuo-Pin. Study on discretization in rough set based on genetic algorithm. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi′an, 2003, 1430~1434.
  • 5Huang Jin-Jie, Li Shi-Yong. A GA-based approach to rough data model. In: Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou. 2004, 1880~1884.
  • 6Roy A., Pal S.K.. Fuzzy discretization of feature space for a rough set classier. Pattern Recognition Letters, 2003, 24(6): 895~902.
  • 7Wang Li-Hong, Zhang Shu-Cui, Fan Hui, Wu Geng-Feng. The information granulation in discretization. In: Proceedings of the Second International Conference on Machine Learning and Cybernedcs, Xi′an, 2003, 2620~2623.
  • 8Li Meng-Xin, Wu Cheng-Dong, Han Zhong-Hua, Yue Yong. A hierarchical clustering method for attribute discretization in rough set theory. In: Proceedings of the third International Conference on Machine Learning and Cybernetics, Shanghai, 2004, 3650~3654.
  • 9Shen L., Tay E.H.. A discretization method for rough sets theory. Intelligent Data Analysis, 2001, 5(5): 431~438.
  • 10Tay E.H., Shen L.. A modified Chi2 algorithm for discretization. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(3): 666~670.

共引文献133

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部