期刊文献+

基于集合的高维多目标优化问题的进化算法 被引量:21

Solving Many-Objective Optimization Problems Using Set-Based Evolutionary Algorithms
下载PDF
导出
摘要 由于高维多目标优化问题包含的目标很多,已有的方法往往难以解决该问题.本文提出一种有效解决该问题的基于集合的进化算法,该方法以超体积、分布度,以及延展度为新的目标,将原优化问题转化为3目标优化问题;定义基于集合的Pareto占优关系,设计体现用户偏好的适应度函数;此外,还提出集合进化策略.将所提方法应用于4个基准高维多目标优化问题,并与其他2种方法比较,实验结果表明了所提方法的优越性. Previous methods are difficult to tackle a many-objective optimization problem since it contains many objectives. A set-based evolutionary algorithm was proposed to effectively solve the above problem in this study. In the proposed method, the o- riginal optimization problem was first transformed into a tri-objective one by taking such indicators as hyper-volume, distribution and spread as three new objectives; thereafter, a set-based Pareto dominance relation was defined, and a fitness function reflecting a user's preference was designed; additionally, set-based evolutionary strategies were suggested. The proposed method was applied to four benchmark many-objective optimization problems and compared with the other two methods. The experimental results show its advantages.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第1期77-83,共7页 Acta Electronica Sinica
基金 中央高校基本科研业务费专项资金资助(No.2013XK09) 国家自然科学基金(No.61105063)
关键词 进化算法 高维多目标优化 集合进化 用户偏好 evolutionary algorithm many-objective optimization set-based evolution user preference
  • 相关文献

参考文献3

二级参考文献42

  • 1孙永进,孙雨耕,房朝晖.无线传感器网络的连通与覆盖[J].天津大学学报(自然科学与工程技术版),2005,38(1):14-17. 被引量:24
  • 2Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms[ M]. UK: John Wiley & Sons, Chichester, 2001. 1-7.
  • 3All Farhang-Mehr and Shapour Azarm. An information-theoretic entropy metric for assessing multi-objective optimization solution set quality. ASME[J]. Journal of Mechanical Design, 2003,125(4) :655 - 663.
  • 4Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182 - 197.
  • 5Kalyanmoy Deb, Sachin Jain. Running Performance Metrics for Evolutionary Multi-Objective Optimization [R ]. Kanpur India: KanGAL Report No. 2002004,2002.
  • 6Kalyanmoy Deb, Manikanth Mohan and Shikhar Mishra. A Fast Multi-objective Evolutionary Algorithm for Ending Well- Spread Pareto-Optimal Solutions[ R]. Kanpur India: KanGAL Report No. 2003002,2003.
  • 7Sanaz Mostaghim, Jiirgen Teich. The role of ε-dominance in multi objective particle swarm optimization methods [A].Proceedings of IEEE Congress on Evolutionary Computation (CEC'2003) [ C]. Canberra,Australia: IEEE Press,2003. 1764 - 1771.
  • 8Miqing Li, Jinhua Zheng, Guixia Xiao. Uniformity assessment for evolutionary multi-objective optimization[ A]. Proceedings of IEEF, Congress on Evolutionary Computation (CEC' 2008) [ C ]. Hongkong: IEEE Press, 2008.625 - 632.
  • 9Schoot J R. Fault tolerant design using single and multicriteria genetic algorithms optimization[ D]. Cambridge: Massachusetts Institute of Technology, 1995.
  • 10Eckart Zitzler, Marco Laumanns, Lothar Tniele. SPEA2: Improving the strength Pareto evolutionary algorithm [ R ]. Zurich, Switzerland: TIK-Report No. 103,2001.

共引文献41

同被引文献194

引证文献21

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部