期刊文献+

基于单调性约束的离散贝叶斯网络参数学习 被引量:8

Discrete Bayesian network parameter learning based on monotonic constraint
下载PDF
导出
摘要 针对小样本条件下的离散贝叶斯网络参数学习问题,提出一种基于单调性约束的学习算法。首先,给出了单调性约束的数学模型,以表达定性的先验信息;然后,将单调性约束以狄利克雷先验的形式集成到贝叶斯估计中,并利用贝叶斯估计进行参数学习;最后,通过仿真实验与最大似然估计和保序回归方法进行比较。实验结果表明,在小样本条件下,所提算法在准确性上优于最大似然估计和保序回归,但时效性介于二者之间。 With respect to the problem of learning parameters of discrete Bayesian network from small sam- ple data, a parameter learning algorithm is proposed based on the monotonic constraint. Firstly, the mathemati- cal model of the monotonic constraint is built to express the qualitative prior information. Then, the monotonic constraint is integrated into the Bayesian estimation as Dirichlet prior and the modified Bayesian estimation is employed to learn parameters. Finally, the proposed algorithm is compared with maximum likelihood estimation and i- sotonic regression by simulation experiments. The experimental results show that the proposed algorithm is better than maximum likelihood estimation and isotonic regression on accuracy, and its' timeliness is between the two algorithms.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第2期272-277,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60774064) 高等学校博士学科点专项科研基金(20116102110026)资助课题
关键词 小样本 单调性约束 保序回归 最大似然估计 small sample monotonic constraint isotonic estimator maximum likelihood estimation(MLE)
  • 相关文献

参考文献14

  • 1Tamada Y,Imoto S,Araki H. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers[J].IEEE Trans on Computational Biology and Bioinformatics,2011,(8):683-697.
  • 2Ibrahim W,Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates[J].{H}IEEE Transactions on Reliability,2011,(3):538-550.
  • 3陈海洋,高晓光,樊昊.变结构DDBNs的推理算法与多目标识别[J].航空学报,2010,31(11):2222-2227. 被引量:13
  • 4辛玉林,杜琳琳,徐世友,陈曾平.基于随机模糊贝叶斯网络的敌我属性融合识别算法[J].控制与决策,2011,26(3):443-447. 被引量:13
  • 5Lee S H,Suh H. Bayesian network-based behavior control for skilli gent robots[A].2008.2910-2917.
  • 6Infantes G,Ghallab M,Ingrand F. Learning the behavior model of a robot[J].Autonomous Robot,2011,(2):157-177.
  • 7Isozaki T. Minimum free energies with "data temperature" for parameter learning of Bayesian networks[A].2008.371-378.
  • 8Isozaki T. Learning causal Bayesian network using minimum free energy principle[J].{H}NEW GENERATION COMPUTING,2012,(1):17-52.
  • 9Niculescu R S. Exploiting parameter domain knowledge for learning in Bayesian networks[D].Pittsburgh:Carnegie Mellon University,2005.
  • 10Feelders A. A new parameter learning method for Bayesian networks with qualitative influence[A].2007.117-124.

二级参考文献33

共引文献29

同被引文献32

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部