摘要
根据分数阶微分定义,采用Adomian分解算法,研究了分数阶简化Lorenz系统的数值解.研究发现,该算法与预估-校正算法相比,求解结果更准确,所耗计算资源和内存资源更少,求解整数阶系统时较Runge-Kutta算法更准确;利用Adomian算法得到的分数阶简化Lorenz系统出现混沌的最小阶数为1.35,比利用预估-校正算法得到的最小阶2.79更小.采用相图、分岔图分析了该系统的动力学特性,基于谱熵算法(SE)和C0算法分析了该系统的复杂度.结果表明,复杂度结果和分岔图一致,说明系统的复杂度同样能反映出系统动力学特性;复杂度随阶数q的增加呈总体减小的趋势,而混沌态时系统参数c变化对系统复杂度影响不大.为分数阶混沌系统应用于信息加密、保密通信领域提供了理论与实验依据.
Based on the definitions of fractional-order differential and Adomian decomposition algorithm, the numerical solution of the fractional-order simplified Lorenz system is investigated. Results show that compared with the Adams-Bashforth- Moulton algorithm, Adomian decomposition algorithm yields more accurate results and needs less computing as well as memory resources. It is even more accurate than Runge-Kutta algorithm when solving the integer order system. The minimum order of the simplified Lorenz system solved by using Adomian decomposition algorithm is 1.35, which is much smaller than 2.79 achieved by the Adams-Bashforth-Moulton algorithm. Dynamical characteristics of the system are studied by the phase diagram, bifurcation analysis~ and complexities are calculated by employing the spectral entropy (SE) algorithm and Co algorithm. Complexity results are consistent with the bifurcation diagrams, for which mean complexity can also reflect the dynamic characteristics of a chaotic system. Complexity decreases with increasing order q, and there are little influences on complexity versus changes of parameter c when the system is chaotic. It provides a theoretical and experimental basis for the application of fractional-order chaotic system in the field of encryption and secure communication.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第3期50-57,共8页
Acta Physica Sinica
基金
国家自然科学基金(批准号:61161006
61073187)资助的课题~~