期刊文献+

有向图字典乘积的代数群性质

Algebra Group Properties of the Lexicographic Product of Digraphs
原文传递
导出
摘要 字典乘积有向图G_1→⊙G_2是通过已知阶数较小的有向图G_1和G_2构造来的,这些小有向图G_1和G_2的拓扑结构和性质肯定影响大有向图G_1→⊙G_2的拓扑结构和性质.运用群论方法,证明了有向图字典乘积的一些代数性质,如:结合律、分配律等. Lexicographic product digraph G1(⊙)G2 is composed from some existing smaller digraphs G1 and G2 by using,in terms of graph theory,lexicographic product.Some properties and topological parameters of such large digraph G1(⊙)G2 are associated strongly with that of the corresponding smaller digraphs G1 and G2.In this paper,we study the algebraic properties of the lexicographic product of two digraphs,mainly concerning the associative,distributive and so on,by using the theory of group.
作者 李峰 赵海兴
出处 《数学的实践与认识》 CSCD 北大核心 2014年第2期150-155,共6页 Mathematics in Practice and Theory
基金 国家重点基础研究发展计划(2013CB329404) 国家自然科学基金(11101329 60863006)
关键词 有向图 字典乘积 结合律 分配律 digraph lexicographic product associative distributive
  • 相关文献

参考文献7

  • 1Bondy J A, Murty U S. Graph Theory with Application[M]. London: The Macmillan Press Ltd, 1976.
  • 2Feder T. Stable networks and product graphs[J]. Mem Amer Math Soc, 1995, 116: 1-89.
  • 3Yegnanarayanan V, Thiripurasundari P R. On some graph operations and related applications[J]. Electronic Notes in Discrete Math, 2009, 33: 123-130.
  • 4Wang W, Li F, Lu H L, et al. Graphs determined by their generalized characteristic polynomials[J]. Linear Algebra Appl, 2011, 434: 1378-1387.
  • 5Li F, Wang W, Xu Z B, et al. Some results on the lexicographic product of vertex-transitive graphs[J]. Appl Math Lett, 2011, 24: 1924-1926.
  • 6李峰,徐宗本,赵海兴,王卫.字典乘积网络的支撑树计数[J].中国科学:信息科学,2012,42(8):949-959. 被引量:3
  • 7Imrich W, Klavar S, Product Graphs[M]. New York: Wiley, 2000.

二级参考文献12

  • 1黄振杰,李晓明.几种复合图生成树个数的一般求法[J].数学物理学报(A辑),1995,15(3):259-268. 被引量:2
  • 2Zhang Y P,Yong X R,Golin M J.The number of spanning trees in circulant graphs[].Discrete Mathematics.2000
  • 3A Cayley.A theorem on trees[].The Quarterly Journal of MaThematics Oxford.1889
  • 4Wei Wang,Feng Li,Ilongliang Lu,Zongben Xu.Graphs determined by their generalized characteristic polynomials[].Linear Algebra and Its Applications.2011
  • 5Kelmans,A. K.,Chelnokov,V. M.A certain polynomial of a graph and graphs with an extremal number of trees[].Journal of Combinatorial Theory.1974
  • 6Moon,J.W.,Harary,F.Enumerating labelled trees[].Graph theory and theoretical physics.1967
  • 7Gilbert B,Myrvold W.Maximizing spanning trees in almost complete graphs[].vNetworks.1997
  • 8CS Cheng.Maximizing the total number of spanning trees in a graph: two related problems in graph theory and optimum design theory[].Journal of Combinatorial Theory.1981
  • 9Chung,F.,Yau,S.-T.Coverings, heat kernels and spanning trees[].The Journal of Combinatorics.1999
  • 10BOESCH F T,WANG J F.A conjecture on the number of spanning trees in the square of a cycle[].In: Notes from New York Graph Theory Day.1982

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部