期刊文献+

施工期混凝土材料特性对其结构耐久性能影响研究 被引量:11

Study on Influence of Concrete Peculiarity on Durability During Construction
下载PDF
导出
摘要 混凝土耐久性受到许多不确定性因素的影响。基于RBF神经网络结构具有自适应确定性,输出值与初始权值无关的优点,根据影响施工期混凝土材料特性耐久性主要因素,建立了相应的混凝土裂缝深度预测模型。根据已有的试验数据,利用MATLAB数学软件实现了对该模型的训练。利用训练好的模型进行混凝土裂缝深度预测。预测结果表明,预测值与实测值误差相对较小,在允许范围内,所以RBF神经网络预测根据施工期混凝土材料特性能够实现碳化混凝土裂缝深度在实际工程中的预测。 Concrete durability is affected by many uncertainty factors. RBF neural network has the advantage of adaptive certainty and the output value has nothing to do with the initial weights. According to the main factors affecting concrete durability, the prediction model for concrete durability depth is established based on the advantages of RBF neural network. Combining with the MATLAB mathematical software, it is used to test mathematical model by the experimental data. The network is used for the prediction for concrete carbonation. The prediction results show that the forecast results conform to the test results very well. Thus, it can be considered a reasonable method.
出处 《施工技术》 CAS 北大核心 2014年第3期48-50,共3页 Construction Technology
基金 张家口市科学技术研究与发展指导计划项目(1221002B)
关键词 混凝土 碳化 耐久性 RBF神经网络 数值模拟 concrete carbonize durability RBF neural network simulation
  • 相关文献

参考文献6

二级参考文献28

  • 1屈文俊,郭猛.风压影响混凝土碳化试验研究[J].混凝土,2005(1):49-51. 被引量:4
  • 2章国成 ,杨利伟 ,王天稳 .混凝土碳化深度预测模型的对比分析[J].建筑技术开发,2005,32(3):81-82. 被引量:5
  • 3金祖权,孙伟,张云升,刘志勇.荷载作用下混凝土的碳化深度[J].建筑材料学报,2005,8(2):179-183. 被引量:62
  • 4Papadakis V G,Vayenas C G,Fardis M N.Fundamental modeling and experimental investigation of concrete carbonation[J].ACI Material Journal,1999(88):363-373.
  • 5[3]Papadakis V G, Vayenas C G, Fardis M N. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal, 1991,88(4):363-373.
  • 6[4]Papadakis V G,Vayenas C G. Experimental investigation and mathematical modeling of the concrete carbonation problem[J]. Chemical Engineering Science, 1991,46(5/6):1333-1338.
  • 7[7]Portmann N F, Lindhoff G S. Application of neural networks in rolling mill automation[J]. Iron and Steel Engineer, 1995,72(2):33-36.
  • 8[8]Tsou P, Shen M-H H. Structural damage detection and identification using neural networks[J]. AIAA Journal, 1994,32(1):176-183.
  • 9[9]Wu X,Ghaboussi J, Garrett J H. Use of neural networks in detection of structural damage[J]. Computers & Structure, 1992,42:649-659.
  • 10[10]Hunt K J, Sbarbaro D, Zbikowski R, et al. Neural networks for control systema survey[J]. Automatica, 1992,28(6):1083-1112.

共引文献35

同被引文献23

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部