期刊文献+

超燃冲压发动机燃烧室的燃烧特性 被引量:5

Combustion characteristics of scramjet combustor
原文传递
导出
摘要 以一种低内阻光滑通道煤油超燃冲压发动机燃烧室为应用背景,采用有限差分法对燃烧室超声速流场进行了数值模拟.对流项采用3阶WENO(weighted essentially non-oscillatory)格式,湍流模型为SST(shear stress transport)k-ω模型,煤油(C12H23)/空气反应模型采用单步化学动力学模型.将燃烧室中沿侧壁的壁面静压的计算结果与实验结果进行了对比,结果符合良好,说明该算法适用于煤油超燃燃烧室计算.研究了燃烧室来流静温、燃料/空气当量比和射流位置对煤油超声速流动与燃烧的影响.计算结果表明:燃烧集中在安装喷嘴一侧的壁面边界层附近,点火位置对当地静温非常敏感.随着来流静温降低、燃料/空气当量比减小和燃烧室扩张角增大,燃烧效率降低,燃烧性能下降,点火位置逐渐向燃烧室出口移动,燃烧放热形成的激波串结构消失.在燃烧室上、下壁面交错布置燃料喷嘴有利于提高燃烧效率.基于此,初步获得了光滑通道燃烧室内煤油点火燃烧的临界条件. Based on a kind of kerosene-fueled scramjet combustor with low internal drag slick configuration, numerical simulation based on finite difference method was performed for its supersonic flowfield. The inviscid flux was discretized by WENO(weighted essentially non-oscillatory) scheme, and the turbulent model was SST(shear stress transport) k-ω mod- el. The single step chemical reaction mechanism was adopted for kerosene (C12 H23). Predicted value of the wall static pressure along the side wall of the combustor is consistent with previously reported test data, indicating the present algorithm is applicable for the simulation of supersonic combustion in kerosene-fueled combustor. The effects of inflow static temperature, fuel/air equivalence ratio and jet location on the kerosene supersonic flow and combus- tion in this combustor were discussed. Results show that combustion is concentrated near the wall boundary layer at the side of the jet nozzle, and the ignition location is very sensitive to the local static temperature. The lower inflow static temperature, fuel/air equivalence ratio and the larger combustor expansion angle mean the less combustion efficiency and combustion performance, and the ignition location moves towards the combustor exit, with the shock cluster inspired by combustion disappearing. Staggered arrangement of the jet nozzles on the upper and lower walls of the combustor can improve the combustion efficiency. Therefore, preliminary critical boundary conditions are obtained to achieve ignition in the slick kerosene-fueled combustor.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第1期14-22,共9页 Journal of Aerospace Power
关键词 超燃冲压发动机 超声速燃烧 煤油燃料 数值模拟 燃烧特性 scramjet supersonic combustion kerosene-fueled numerical simulation combustion characteristics
  • 相关文献

参考文献14

  • 1Weber R J,MacKay J S. An analysis of ramjet engines using supersonic combustion.NACA Tech Note 4386[R].1958.
  • 2Bogdanoff D W. Advanced injection and mixing techniques for scramjet combustors[J].JOURNAL OF PROPULSION AND POWER,1994,(02):183-190.
  • 3John M S,Dash S M,Kenzakowsbi D C. Historical survey on enhanced mixing in scramjet engine.AIAA 99-4869[R].1999.
  • 4Grueing C,Mahinger F. Supersonic combustion of kero sene/H2 mixture in a model scramjet combustor[J].Combustion Science and Technology,1999,(1/2/3/4/5/6):1-22.
  • 5Yu G,Li J G,Chang X Y. Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors[J].Journal of Propulsion and Power,2001,(06):1263-1272.
  • 6Rajasekaran A,Satishkumar G,Babu V. Numerical simula tion of the supersonic combustion of kerosene in a model combustor[J].PROGRESS IN COMPUTATIONAL FLUID DYNAMICS,2009,(01):30-42.
  • 7赵俊波,沈清,张红军,白葵.基于T-S波谐频共振的超燃进气道边界层转捩[J].航空动力学报,2010,25(11):2420-2424. 被引量:12
  • 8Gordon S,McBride B J. Computer program for calculation of complex chemical equilibrium compositions rocket per formance,incident and reflected shocks,and Chapman Jouguet detonations.NASA SP-273[R].1971.
  • 9Dufour E,Bouchez M. Computational analysis of a kerosene-fuelled scramjet.AIAA-2001-1817[R].2001.
  • 10Menter F R. Improved two-equation k-ω turbulence model for aerodynamic flows.NASA TM-103975[R].1992.

二级参考文献13

  • 1Fletcher E A,Dorsch R G,Gerstein M. Combustion of aluminum borohydride in a supersonic wind tunnel[R]. NACA RM E55D07a,1955.
  • 2Peebles C. Road to Mach 10: lessons learned from the X -43A flight research program[M]. US: American Institute of Aeronautics and Astronautics,2008.
  • 3Marshall L A, Bahm C, Corpening G P. Overview with results and lessons learned of the X -43A Mach 10 flight[R]. AIAA Paper 2005- 3336,2005.
  • 4Marshall L A, Corpening G P. A chief engineer's view of the NASA X- 43A scramjet flight test[R]. AIAA Paper 2005 -3332,2005.
  • 5Berry S A, Nowak R J, Horvath T J. Boundary layer control for hypersonic airbreathing vehicles[R]. AIAA Paper 2004-2246,2004.
  • 6Berry S A, Difulvio M, Kowalkowski M K. Forced boundary layer transition on X -43 in NASA LARC 20-inch Mach 6 air funnel[R]. NASA/TM 2000- 210316,2000.
  • 7Resholko E. Transition issues at hypersonic speeds[R]. AIAA Paper 2006 -707,2006.
  • 8Saric W S, Thomas A S W. Experiments on the subharmonic route 'to turbulence in boundary layers, turbulence and chaotic phenomena in fluids[M]//Tatsumi T. Turbulence and Chaotic Phenomena in Fluids. Amsterdam: North Holland, 1984: 117- 122.
  • 9Saric W S,Kozlov V V,Lerchenko V Y. Forced and unforced subharmonic resonance in boundary layer transition [R]. AIAA Paper 1984-0007,1984.
  • 10Reed H L, Saric W S. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996,28:389- 428.

共引文献11

同被引文献39

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部