期刊文献+

Oxidative capacities of size-segregated haze particles in a residential area of Beijing 被引量:5

Oxidative capacities of size-segregated haze particles in a residential area of Beijing
原文传递
导出
摘要 The frequent haze days around the Chinese capital of Beijing in recent years have aroused great attention owing to the detrimental effects on visibility and public health. To discover the potential health effects of the haze, oxidative capacities of airborne particles collected in Beijing during haze and clear days were comparably assessed by a plasmid scission assay. Eleven water-soluble trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, V, Se, T1, and Zn) in the size-segregated airborne particles were quantitatively analyzed by inductively coupled plasma mass spectrometry, and most of the water- soluble trace elements were found to mainly concentrate in the fine particle size of 0.56-1.0 μm. In comparison with clear days, the mass concentrations of 11 analyzed water-soluble trace elements remarkably increased during haze days, and the oxidative capacities determined by the plasmid scission assay were markedly elevated accordingly during the haze days under the same dosage of particles as for those during clear days. Water-soluble trace elements in airborne particles, such as Cu, V, and particularly Zn, were found to have significantly positive correlations with the plasmid DNA damage rates. Because Cu, V, and Zn have been considered as bioavailable elements, the evident increase of these elements during haze days may be greatly harmful to human health. The frequent haze days around the Chinese capital of Beijing in recent years have aroused great attention owing to the detrimental effects on visibility and public health. To discover the potential health effects of the haze, oxidative capacities of airborne particles collected in Beijing during haze and clear days were comparably assessed by a plasmid scission assay. Eleven water-soluble trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, V, Se, T1, and Zn) in the size-segregated airborne particles were quantitatively analyzed by inductively coupled plasma mass spectrometry, and most of the water- soluble trace elements were found to mainly concentrate in the fine particle size of 0.56-1.0 μm. In comparison with clear days, the mass concentrations of 11 analyzed water-soluble trace elements remarkably increased during haze days, and the oxidative capacities determined by the plasmid scission assay were markedly elevated accordingly during the haze days under the same dosage of particles as for those during clear days. Water-soluble trace elements in airborne particles, such as Cu, V, and particularly Zn, were found to have significantly positive correlations with the plasmid DNA damage rates. Because Cu, V, and Zn have been considered as bioavailable elements, the evident increase of these elements during haze days may be greatly harmful to human health.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第1期167-174,共8页 环境科学学报(英文版)
基金 supported by the"Strategic Priority Research Program-Formation Mechanism and Control Strategies of Haze in China"of the Chinese Academy of Sciences(No.XDB05010100), the National Basic Research Program(973)of China(No.2013CB228503,2010CB732304)
关键词 haze water soluble trace elements plasmid scission damage size distribution haze water soluble trace elements plasmid scission damage size distribution
  • 相关文献

参考文献5

二级参考文献98

共引文献152

同被引文献54

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部