期刊文献+

7人参与的一类超图存取结构的最优信息率 被引量:2

The optimal information rate of a type of access structures based on hypergraphs on seven participants
下载PDF
导出
摘要 运用存取结构与连通超图之间的关系,将7人参与的一类存取结构转化为连通超图中顶点数为7的一类共94种超图存取结构,研究了最优信息率及其所对应的完善秘密共享方案的构造.运用超图理论及方法对其中80种超图存取结构最优信息率的精确值进行了计算,并给出达到此信息率的秘密共享方案的具体构造方法;对其余的14种超图存取结构运用λ-分解等方法给出最优信息率的上下界.证明了具有n个顶点且秩为r的超图,其超边数至少为(n-r)/(r-1)+1条,至多为Cr n条;并从理论上证明了满足一定条件的顶点数为n(4≤n≤9),超边数为4且秩为3的非理想超图的最优信息率为2/3. Abstract: Through transforming the access structures on seven participants to a total of 94 con- nected hypergraphs on seven vertices, the optimal information rate and the construction of perfect secret sharing schemes corresponding to these access structures are given in terms of the relation- ship between access structures and connected hypergraphs. The exact values for the optimal in- formation rate of the 80 access structures are computed by using hypergraph theory and method, and the relevant construction of perfect secret sharing schemes is discussed. The upper and lower bounds on the information rate of other 14 access structures based on hypergraphs are given by u- sing ;t-Decomposition method and so on. At the same time, it is shown that the hypergraph with n vertices and r rank has at least [(n--r)/(r--1)+1 edges, and at most Cr edges, and that the optimal information rates of the non-ideal hypergraphs with n(4≤n≤9) vertices and r ranks are all equal to 2/3 if they meets certain conditions.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期1-6,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61373150) 陕西省科学技术研究发展计划工业攻关项目(2013K0611)
关键词 完善的秘密共享方案 存取结构 超图 超图存取结构 最优信息率 perfect secret sharing scheme access structure hypergraph hypergraph accessstructure optimal information rate
  • 相关文献

参考文献12

二级参考文献50

  • 1刘木兰,肖亮亮,张志芳.一类基于图上随机游动的密钥共享体制[J].中国科学(E辑),2007,37(2):199-208. 被引量:3
  • 2STINSONDR.密码学原理与实践[M].3版.冯登国,译.北京:电子工业出版社,2009.
  • 3Shamir A.How to share a secret[J].Communications of the ACM, 1979,22(11 ) :612-613.
  • 4Blakley G.Safeguarding cryptographic keys[C]//Proceedings of the National Computer Conference.Berlin:Springer- Verlag, 1979,48: 313-317.
  • 5Benaloh J C, Leichter J.Generalized secret sharing and monotone functions[C]//LNCS 403:Advances in Cryptology- CRYPTO ' 88,1990:27-35.
  • 6Li Zhihui, Xue Ting, Lai Hong.Secret sharing scheme from binary linear codes[J].Information Sciences, 2010, 180:4412-4419.
  • 7Jackson W, Martin K M.Perfect secret sharing schemes on five participants[J].Designs Codes Cryptography, 1996,9: 267-286.
  • 8Van Dijk M.On the information rate of perfect secret sharing schemes[J].Designs Codes Cryptography, 1995,6: 143-169.
  • 9Song Yun, Li Zhihui, Wang Weicong.The information rate of secret sharing schemes on seven participants by con- nected graphs[C]//Lecture Notes in Electrical Engineering, 2012,127: 637-645.
  • 10Capocelli R M, De Santis A, Gargano L, et al.On the size of shares for secret sharing schemes[J].Cryptology, 1993,6: 157-167.

共引文献13

同被引文献21

  • 1DouglasR.Stinson.密码学原理与实践[M].3版.北京:电子工业出版社,2009:141-183.
  • 2JACKSON W, MARTIN K M. Perfect secret sharing schemes on five participants[J]. Designs, Codes and Cryptography, 1996, 9(3):267-286.
  • 3GHARAHI M, DEHKORDI M H,The complexity of the graph access structures on six participants[J]. Designs, Codes and Cryptography, 2013, 67(2):169-173.
  • 4VAN D M. On the information rate of perfect secret sharing schemes[J]. Designs, Codes and Cryptography, 1995, 6(2): 143-169.
  • 5SONG Yun, LI Zhihui, WANG Weicong. The information rate of secret sharing schemes based on seven participants by connect graphs[J]. Recent Advance in Computer Science and Information Engineering Lecture Notes in Electrical Engineering, 2012, 127:637-645.
  • 6MARTI F J, PADRO C. Secret sharing schemes with three or four minimal qualified subsets[J]. Design,Codes and Cryptography, 2005, 34(1): 17-34.
  • 7GIOVAANNI D C, CLEMENTE G. Hypergraph decomposition and secret sharing [J]. Discrete Applied Mathematics, 2009, 157(5):928-946.
  • 8Stanislaw Spiez, Jerzy Urbanowicz, Aleksander Zablocki. On constructing privileged coalitions in Shamir's type scheme [J].Finite Fields and Their Applications, 2013, 19( 1 ) :73-85.
  • 9DIJK V. On the information rate of perfect secret sharing schemes[J].Designs codes and Cryptography, 1995, 6(2) :143-169.
  • 10GHARAHI M, DEHKORDI M H. The complexity of the graph access structures on six participants[J].Designs, Codes and Cryptography, 2013, 67(2) :169-173.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部