期刊文献+

基于EKF的锂电池状态估算策略 被引量:7

Strategy of estimating state of lithium-ion based on extended Kalman filter
下载PDF
导出
摘要 在研究与分析电池极化现象对电池状态(SOC)估算影响的基础上,提出一种扩展Kalman滤波(EKF)的算法对SOC进行估算,在Thevenin改进模型的基础上建立了电池的非线性状态空间方程,通过比较电池实际端电压和估算端电压的差值,修正安时积分法得到的SOC值,使得极化效应对SOC估算精度的影响大大减弱。仿真分析结果表明,此方法提高了电池SOC计算的精度。 The polarization phenomenon of battery affecting the SOC estimation was analyzed. The algorithm of extend Kalman filter was applied to predict SOC of lithium-ion. A battery nonlinear dynamic model in discrete-time state-space form was built based on the improved Thevenin model. The SOC value was obtained by comparing the difference amongthe actual battery voltage and estimated voltage and coulomb counting method. The polarization was weakened mostly by the improved algorithm of state SOC. The test results show that the SOC accuracy can really be increased by this new way.
出处 《电源技术》 CAS CSCD 北大核心 2014年第2期237-238,244,共3页 Chinese Journal of Power Sources
关键词 锂电池 卡尔曼滤波 状态估计 SOC lithium-ion Kalman filter state estimation SOC
  • 相关文献

参考文献5

二级参考文献24

共引文献207

同被引文献27

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部