期刊文献+

改进的参考独立分量分析算法 被引量:1

Improved Independent Component Analysis with Reference Algorithms
下载PDF
导出
摘要 针对参考独立分量分析收敛速度较慢的问题,提出了两种基于改进的快速收敛牛顿迭代方法的参考独立分量分析方法。该方法首先对观测信号进行白化预处理,避免观测信号矩阵求逆运算,减少了算法的计算量;然后采用修正的具有三阶收敛速度的牛顿迭代方法对参考独立分量分析的代价函数进行优化,推导出快速收敛的参考独立分量分析算法。仿真实验结果表明,改进后的算法是有效的,算法收敛速度相对原算法提高了1.7倍,相对现有算法提高了1倍,而且误差更小。 To overcome the problem that independent component analysis with reference( ICA-R) has slo-wer convergence speed, two improved independent component analysis with reference algorithms with faster convergence speed are proposed. The new algorithms use the method of pre-whitening to process the ob-served signals to avoid inverse operation of the matrix, and decrease computational time. Secondly, two modified Newton iterative methods with third order convergence are adopted to optimize the cost function of independent component analysis with reference, and deduce the improved independent component analysis with reference. Simulation results prove the efficiency of this new algorithm, and compared with the origi-nal algorithm and the other improved algorithm, the convergence speed of the proposed algorithms raises by 1. 7 times and 1 time respectively with smaller error.
出处 《电讯技术》 北大核心 2014年第1期58-62,共5页 Telecommunication Engineering
基金 吉林省科技发展计划项目(201101110) 吉林市科技发展项目(2013625009)~~
关键词 盲源分离 参考独立分量分析 牛顿迭代 代价函数 收敛速度 blind source separation independent component analysis with reference Newton iterative method cost function convergence speed
  • 相关文献

参考文献12

  • 1Hyvarinen A. Independent component analysis:recent advances[J].Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sci-ences,2013,(1984):1-19.
  • 2Lu W,Rajapakse J C. ICA with reference[A].San Di-ego,California:IEEE,2001.120-125.
  • 3Lu W,Rajapakse J C. ICA with reference[J].Neuro-Computing,2006,(16-18):2244-2257.
  • 4Lin Qiu-hua,Zheng Yong-rui,Yin Fu-liang. A fast algorithm for one-unit ICA-R[J].{H}Information Sciences,2007,(5):1265-1275.
  • 5Li Changli,Li Guisheng,Yuli S. An improved method for independent component analysis with reference[J].Dig-ital Signal Processing,2010,(2):575-580.
  • 6Zhang Zhi-Lin. Morphologically constrained ICA for ex-tracting weak temporally correlated signals[J].Neuro-Computing,2008,(6):1669-1679.
  • 7霍政权,李宏.参考独立分量分析固定点算法[J].计算机应用研究,2011,28(1):134-136. 被引量:4
  • 8张守成,刘永凯.一种基于峭度的一单元ICA-R固定点算法[J].计算机工程与应用,2012,48(2):130-132. 被引量:3
  • 9Li S,Lu H C,Ruan X. Human body segmentation based on independent component analysis with reference at two-scale superpixel[J].Image Processing,2012,(6):770-777.
  • 10Breuer L,Axer M,Dammers J. A new constrained ICA approach for optimal signal decomposition in polarized light imaging[J].{H}Journal of Neuroscience Methods,2013,(1):30-38.

二级参考文献25

  • 1HYVARINEN A.Independent component analysis[M].周宗潭,黄国华,徐昕,等译.北京:电子工业出版社,2007.
  • 2HYVARINEN A,OJA E.Independent component analysis: algorithms and application[J].Neural Networks,2000,13(4-5):411-430.
  • 3BELL A J,SEJNOWSKI T J.An information maximization approach to blind separation and blind deconvolution[J].Neural Compution,1995,7(6):1129-1159.
  • 4HYVARINEN A.Fast and robust fixed-point algorithm for indepen-dent component analysis[J].IEEE Trans on Neural Networks,1999,10(3):626-634.
  • 5ZHANG Zhi-ling.Morphologically constrained ICA for extracting weak temporally correlated signals[J].Neurocomputing,2008,71(7-9):1669-1679.
  • 6LU Wei,RAJAPAKSE J C.ICA with reference[J].Neurocompu-ting,2006,69(16-18):2244-2257.
  • 7LIN Qiu-hua,ZHENG You-rui,YIN Fu-liang,et al.A fast algorithm for one-unit ICA-R[J].Information Sciences,2007,177(5):1265-1275.
  • 8LI Chang-li,LIAO Gui-sheng.A reference-based blind source extraction algorithm[J].Neural Computing and Applications,2010,19(2):299-303.
  • 9De MOOR D. Daisy : database for the identification of systems[EB/ OL ]. ( 2008- 02- 22 ) [ 2009-12-28 ]. http ://homes : east. kuleuven. be/- smc/daisy.
  • 10HUANG De-shuang,MI Jian-xun.A new constrained independent component analysis method[J].IEEE Trans on Neural Networks,2007,18(5):1532-1535.

共引文献29

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部