期刊文献+

离心调速器系统的混沌分岔及控制 被引量:3

Chaos Bifurcation and Control of Centrifugal Governor System
下载PDF
导出
摘要 建立了离心调速器系统的动力学方程,借助系统的相图、分岔图和Lyapunov指数图分析了系统的混沌动力学形态.利用对系统分别施加周期参数强迫、周期激励控制和x|x|控制的方法,通过适当调整控制参数,将系统的混沌行为有效地控制到稳定的周期轨道.运用数值仿真验证了方法的有效性和可行性. The dynamics equation is established, and by means of centrifugal governor system, bifurcation diagram and Lyapunov exponent diagram, the form of the chaotic dynamics system is analyzed. By the imposition on the system of the periodic parameter forcing, periodic excitation control and x|x| control, and through the appropriate adjustment of control parameters, the chaotic behavior of the system is effectively controlled to the stable periodic orbits. Numerical simulation is employed to verify the effectiveness and feasibility of the method
出处 《温州大学学报(自然科学版)》 2014年第1期46-51,共6页 Journal of Wenzhou University(Natural Science Edition)
关键词 离心调速器 混沌 分岔 LYAPUNOV指数 相图 Centrifugal Governor Chaos Bifurcation Lyapunov Exponent Phase Diagram
  • 相关文献

参考文献8

二级参考文献59

共引文献22

同被引文献22

  • 1苟向锋,罗冠炜.机械式离心调速器系统混沌的线性反馈反控制[J].机械设计,2005,22(4):30-33. 被引量:5
  • 2常迎香,褚衍东,张建刚.一类离心调速器的稳定性及混沌控制[J].兰州理工大学学报,2005,31(2):144-148. 被引量:3
  • 3Ge Z M, Yang H S, Chen H H, et al. Regular and chaotic dynamics of a rotational machine with a centrifugalgovernor [J]. International Journal of Engineering Science, 1999, 37: 921-943.
  • 4Denny M. Watt steam governor stability [J]. Eur J Phys, 2002, 23: 339-351.
  • 5Barrera L, Valls C. Center manifold for difference equations smooth parameter dependence [J]. Nonlinear Analysis,2010, 73(3): 725-749.
  • 6Wiggins S. Global Bifurcation and Chaos [M]. New York: Springer Verlag, 1988: 80-91.
  • 7Yu P. Simplest normal forms of Hopf and generalized Hopf bifurcation [J]. International Journal of Bifurcation andChaos, 1999, 10(9): 1917-1939.
  • 8Zhang J G, Li X F, Chu Y D. Hopf bifurcation, Lyapunov exponents and control of chaos for a class of centrifugalflywheel governor system [J]. Chaos, Solution & Fractas, 2009, 39(5): 2150-2168.
  • 9Ditto W D, Rauseo S N, Spano M L. Experimental control of chaos [J]. Physical Review Letters, 1990, 65(26):3211-3212.
  • 10王炜,张琪昌,田瑞兰.两自由度强非线性振动系统的渐近解及分岔分析[J].振动与冲击,2008,27(5):130-133. 被引量:9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部