期刊文献+

基于自适应学习群体搜索技术的集成进化算法 被引量:2

Ensemble of evolution algorithm based on self-adaptive learning population search techniques
原文传递
导出
摘要 为了提高连续数值优化算法的普适性和鲁棒性,提出了基于自适应学习群体搜索技术的集成进化算法.该算法集成了3种自适应学习群体智能优化算法作为子算法,其中1种子算法是本文设计的,另外两种子算法来自相关文献.相应地,整个进化种群被分成了3个子种群,在进化过程中,算法以并行的方式采用每种子算法独立地进化各自的子种群,而在进化过程的不同阶段,每种子算法的进化策略及其参数可以自适应地调整.在实验部分,首先定义了算法性能度量标准,然后在26个较新的测试函数上做了算法性能对比实验,实验结果表明所提出的算法具有较高的普适性和鲁棒性. In order to enhance the performance of universality and robustness of the numerical optimization algorithms, an ensemble of evolution algorithm based on self-adaptive learning population search techniques (EEA-SLPS) is proposed. EEA-SLPS integrates three self-adaptive learning population based algorithms from different fields of stochastic search techniques. One sub-algorithm is designed in this paper, the other two are recently proposed in relevant literature. The whole individual population is divided into three sub-populations, and each sub-algorithm is employed to evolve each sub-population respectively in parallel manner during the whole search process. In each sub-algorithm, both search strategies and parameters are gradually self-adaptive in different stages of the search process. The performance of EEA-SLPS is cxtensively evaluated on a suite of 26 bound-constrained test functions with different characteristics. By comparing with several state-of:the-art algorithms, the experimental results clearly verify the advantages of EEA-SLPS.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第2期458-465,共8页 Systems Engineering-Theory & Practice
基金 江苏省普通高校研究生科研创新计划(CXLX11_0203) 国防基础研究基金(Q072006C002_1) 航空科学基金(2010zc13012)
关键词 自适应 集成进化 进化学习 智能计算 优化 self-adaptation ensemble evolution evolution learning computational intelligence optimization
  • 相关文献

参考文献16

  • 1周辉仁,唐万生,王海龙.基于差分进化算法的多旅行商问题优化[J].系统工程理论与实践,2010,30(8):1471-1476. 被引量:30
  • 2王巧灵,高晓智,王常虹.基于群体智能免疫算法的PID自整定[J].系统工程理论与实践,2010,30(6):1062-1066. 被引量:6
  • 3师彪,李郁侠,于新花,闫旺.基于改进粒子群-模糊神经网络的短期电力负荷预测[J].系统工程理论与实践,2010,30(1):157-166. 被引量:46
  • 4Qin A K,Huang V L,Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J].{H}IEEE Transactions on Evolutionary Computation,2009,(02):398-417.
  • 5Wang Y,Li B,Weise T. Self-adaptive learning based particle swarm optimization[J].{H}Information Sciences,2011,(20):4515-4538.
  • 6Peng F,Tang K,Chen G L. Population-based algorithm portfolios for numerical optimization[J].{H}IEEE Transactions on Evolutionary Computation,2010,(05):782-800.
  • 7Burke E K,Hyde M R,Kendall G. Exploring hyper-heuristic methodologies with genetic programming[J].{H}COMPUTATIONAL INTELLIGENCE,2009,(03):177-201.
  • 8Ross P,Marfn-Blazquez J G. Constructive hyper-heuristics in class timetabling[A].New York:IEEE,2005.1493-1500.
  • 9Burke E K,Kendall G,Soubeiga E. A tabu-search hyperheuristic for timetabling and rostering[J].{H}JOURNAL OF HEURISTICS,2003,(06):451-470.
  • 10Liang J J,Suganthan P N,Deb K. Novel composition test functions for numerical global optimization[A].Pasadena:IEEE,2005.68-75.

二级参考文献31

共引文献79

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部