期刊文献+

基于帧差能量图遗传算法的自遮挡步态识别 被引量:1

Self Occlusion Gait Recognition Based on Genetic Algorithm with Frame Difference Energy Image
下载PDF
导出
摘要 传统的步态识别方法在处理自遮挡步态识别问题时,通常由于从视频序列中分割出来的轮廓有噪声而不能很好地进行特征提取。为了解决这个问题,提出了基于帧差能量图(Frame Difference Energy Image,FDEI)的遗传算法(Genetic Algorithm,GA),首先采用数学形态学图像处理方法填平轮廓的漏洞并消除噪声,然后借助于步态能量图计算出步态图像的帧差能量图,接着从轮廓图像序列中提取出步态特征,最后,利用遗传算法完成步态的识别。在中科院自动化所-B(CASIA-B)步态数据库上实验验证了所提方法的有效性,实验结果表明,与几种先进的步态方法相比,所提方法在处理自遮挡步态识别问题上取得了更好的识别效果。 Usually, due to the noise contour segmentation from video sequences, the traditional gait recognition method can not be good for feature ex-traction in dealing with self-occlusion gait recognition problem. To address this problem, genetic algorithm based on frame difference energy image is proposed. Firstly, mathematical morphological image processing methods are used for holes remedy and noise elimination, then frame difference energy image of the gait image is compntered by means of the gait energy image, gait features are extracted from the silhouette image sequences. Finally, genetic algorithm is employed to complete the identification of gait. The effectiveness of proposed method is verified by the experiments on gait database B of Chi-nese Academy of Sciences Institute of Automation (CASIA-B). Experiment :results show that proposed method has better recognition efficiency on self occlusion gait recognition comparing with several latest gait approaches.
作者 唐春林
出处 《电视技术》 北大核心 2014年第5期173-177,共5页 Video Engineering
基金 广东省教育科学"十二五"规则课题(2012JK304)
关键词 步态识别 自遮蔽 侦差能量图 遗传算法 特征提取 gait recognition self occlusion frame difference energy image genetic algorithm feature extraction
  • 相关文献

参考文献13

  • 1LU J,TAN Y. Uncorrelated discriminant simplex analysis for view -in- variant gait signal computing [ J ]. Pattern Recognition Letters, 2010, 31 (5) : 382-393.
  • 2贲晛烨,安实,王健,王科俊.基于线性插值的张量步态识别算法[J].计算机应用研究,2012,29(1):355-358. 被引量:11
  • 3刘砚秋,王旭,王玉梅,吕红.傅里叶变换的多视角步态识别[J].计算机工程与应用,2012,48(6):169-170. 被引量:5
  • 4BASHIR K,XIANG T,GONG S. Gait recognition without subject cooper- ation[J]. Pattern Recognition Letters, 2010, 31 (13) : 2052-2060.
  • 5LIU N,LU J,TAN Y P. Joint subspace learning for view-invariant gait recognition [ J ]. IEEE Signal Processing Letters, 2011, 18 ( 7 ) : 431--434.
  • 6车辚辚,孔英会.基于动态部位特征的步态识别方法[J].计算机应用,2012,32(12):3418-3421. 被引量:2
  • 7KUMAR H P. NAGENDRASWAMY H S. Gait recognition based on symbolic representation [ J ]. International Journal of Machine Intelli- gence, 2011,3(4) : 295-301.
  • 8杨静,阮秋琦,李小利.基于频谱分析的Procrustes统计步态识别算法[J].智能系统学报,2011,6(5):432-439. 被引量:3
  • 9ROY A, SURAL S, MUKHERJEE J. Gait recognition using pose kinemat- ics and pose energy image [ J ]. Signal Processing, 2012, 92 (3): 780-792.
  • 10ARIYANTO G,NIXON M S. Model-based 3D gait biometrics[ J]. In- ternational Joint Conference on Biometrics, 2011,34 ( 3 ) : 11-13.

二级参考文献75

  • 1韩鸿哲,李彬,王志良,刘冀伟.基于傅立叶描述子的步态识别[J].计算机工程,2005,31(2):48-49. 被引量:21
  • 2阮秋琦,阮宇智.数字图像处理[M].北京:电子工业出版社,2007.
  • 3LU Hai-ping, PLATANIOTIS K N, VENETSANOPOULOS A N. MPCA: multilinear principal component analysis of tensor objects [ J ]. IEEE Trans on Neural Networks ,2008,19( 1 ) : 18-39.
  • 4LU Ji-wen, ZHANG Er-hu. Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion[ J]. Pattern Recognition Letters,2007,28(16) : 2401-2411.
  • 5TAN Dao-liang, HUANG Kai-qi, YU Shi-qi, et al. Uniprojective features for gait recognition [ C ]//Proc of the 2nd International Conference on Biometrics. 2007 : 673-682.
  • 6BOBICK A F, DAVIS J W. The recognition of human movement using temporal templates[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2001,23(3) :257-267.
  • 7LIU Jian-yi, ZHENG Nan-ning. Gait history image: a novel temporal template for gait [ C ]//Proc of IEEE International Conference on Recognition Multimedia and Expo. 2007: 663-666.
  • 8LAM T, LEE R. A new representation for human gait recognition: motion Silhouette image MSI[ C]//Proc of International Conference on Biometrics. Berlin : Springer-Verlag,2006 : 612- 618.
  • 9YANG Jun, WU Xiao-juan, PENG Zhang. Gait recognition based on difference motion slice [ C ]//Proc of the 8th International Conference on Signal Processing. 2006: 16-20.
  • 10LIU Zong-yi, SARKAR S. Simplest representation yet for gait recognition: averaged Silhouette [ C ]//Proc of the 17th International Conference on Pattern Recognition. Washington DC: IEEE Computer Society,2004 : 211-214.

共引文献24

同被引文献9

  • 1NIINUMA K,PARK U ,JAIN A K. Soft biometric traits for continu- ous user authentication [ J ]. Information Forensics and Security. 2004,5(4) :771-780.
  • 2ZHOU XL,BHANU B. lnlegrating face and gait hr human recogni- tion at a distance in video[ J ]. IEEE Trans. System Man. and Cyber- netics,2007,37 ( 5 ) : 1119-1137.
  • 3GENG Xin, WANG Liang, LI Ming, et al. Adaptive fusion of gait and face for human identification in video [ J 1. Applications of Computer Vision ,2008,7 ( 9 ) : 1-6.
  • 4WANG Yuxiong,ZHANG Yujin. Nonnegative matrix factorization: a comprehensive review [ J]. IEEE Trans. Knowledge and Data Engi- neering,2013,25 (6) :1337-1351.
  • 5LIU Chengiun. Learning the uncorrelated,independent, and discrim- inating color spaces for face recognition E J ]. Information Forensics and Security,2008,3 ( 2 ) :213-222.
  • 6周斌,林喜荣,贾惠波,周永冠.量化层多生物特征融合的最佳权值[J].清华大学学报(自然科学版),2008,48(2):192-195. 被引量:3
  • 7李媛媛,张立峰.多传感器自适应加权融合算法及其应用研究[J].自动化与仪器仪表,2008(2):10-13. 被引量:36
  • 8郭磊,王秋光.Adaboost人脸检测算法研究及OpenCV实现[J].哈尔滨理工大学学报,2009,14(5):123-126. 被引量:35
  • 9李轶,明东,王璐,綦宏志,万柏坤.融合步态和人脸特征的远距离身份识别研究[J].仪器仪表学报,2011,32(2):264-270. 被引量:10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部