期刊文献+

基于约束得分的动态集成选择算法

Dynamic ensemble selection algorithm based on constraint score
下载PDF
导出
摘要 针对基于约束得分的特征选择容易受成对约束的组成和基数影响的问题,提出了一种基于约束得分的动态集成选择算法(dynamic ensemble selection based on bagging constraint score,BCS-DES)。该算法将bagging约束得分(bagging constraint score,BCS)引入动态集成选择算法,通过将样本空间划分为不同的区域,使用多种群并行遗传算法为不同测试样本选择局部最优的分类集成,达到提高分类精度的目的。在UCI实验数据集上进行的实验表明,BCS-DES算法较现有的特征选择算法受成对约束组成和基数影响更小,效果更好。 Aiming at the problem that the feature selection based on constraint score can be easily affected by the composition and eardinality of pairwise constraints, this paper presented a new method called dynamic ensemble selection based on bagging constraint score. The algorithm introduced bogging constraint score into dynamic ensemble selection, divided the sample space into different parts, and then used the multi:population genetic algorithm to select the optimal multi-classifiers ensemble for the accuracy of the local classification. The experimental results on UCI datasets illustrates that the BCS-DES is smaller affected by the composition and cardinality of the pairwise constraints than the current feature selection methods, and can get better results.
出处 《计算机应用研究》 CSCD 北大核心 2014年第3期708-712,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61004069) 安徽省自然科学基金资助项目(1208085QF107)
关键词 约束得分 动态集成选择 特征选择 分类器集成 成对约束 constraint score dynamic ensemble selection feature selection classifier ensemble pairwise constraints
  • 相关文献

参考文献12

  • 1LIU Hua-wen, SUN Ji-gui, LIU Lei, et al. Feature selection with dy- namic mutual information[ J]. Pattern Recognition, 2009, 42 (7) : 1330-1339.
  • 2CHEN Jing-nian, HUANG Hou-kuan, TIAN Sheng-feng, et al. Fea- ture selection for text classification with Nai've Bayes [ J ]. Expert Systems with Applications, 2009, 36(3 ) : 5432-5435.
  • 3ZHANG Dao-qiang, CHEN Song-can, ZHOU Zhi-hua. Constraint score: a new filter method for feature selection with pairwise con- straints [ J ]. Pattern Recognition, 2008, 41 (5) : 1440- 1451.
  • 4SUN Dan, ZHANG Dao-qiaug. Bagging constraint score for feature selection with pairwise constraints [ J ]. Pattern Recognition, 2010, 43(6) : 2106-2118.
  • 5ZHOU Zhi-hua, WU Jian-xin, TANG Wei. Ensembfing neural net- works: many could be better than all [ J]. Artificial Intelligence, 2002, 137(1) : 239-263.
  • 6TSOUMAKAS G, PARTALAS I, VLAHAVAS I. Applications of su- pervised and unsupervised ensemble methods [ M ]. [ S. 1. ] : Sprin- ger, 2009: 1-13.
  • 7KO A H R, SABOURIN R, Jr BRITTO A S. From dynamic classifier selection to dynamic ensemble selection [ J ]. Pattern Recognition, 2008, 41(5) : 1718-1731.
  • 8HE Xiao-fei, CAI Deng, NIYOGI P. Advances in neural information processing systems[ M]. [ S. 1. ] :MIT Press, 2006: 507-525.
  • 9YU Lei, LIU Huan. Efficient feature selection via analysis of rele- vance and redundancy[ 11- The Journal of Machine Learning Re- search, 2004, 5 : 1205-1224.
  • 10WOLOSZYNSKI T, KURZYNSKI M. A probabilistic model of classi- fier competence for dynamic ensemble selection[J]. Pattern Recog- nition, 2011,44( 10): 2656-2668.

二级参考文献14

  • 1Nie Changhai, Leung Hareton. A survey of combinatorial testing. ACM Computing Survey, 2011, 43(2), Article 11: 1-29.
  • 2Kuhn D, Reilly M. An investigation of the applicability of design of experiments to software testing//Proeeedings of the 27th Annual NASA Goddard/IEEE Software Engineering Workshop. Los Alamitos, CA, 2002:91.
  • 3Williams Alan W, Prober Robert L. A practical strategy for testing pair-wise coverage of network interfaces//Proceedings of the 7th International Symposium on Software Reliability Engineering(ISSRE1996). White Plaints, NY, USA, 1997:246-254.
  • 4Cohen D M, Dalai S R, Fredman M L, Patton G C. The AETG system.. An approach to testing based on combinatorial design. IEEE Transactions on Software Engineering, 1997, 23(7), 437-444.
  • 5Colbourn C J, Cohen M B, Turban R C. A deterministie density algorithm for pairwise interaction eoverage//Proeeed- ings of the lASTED International Conferenee on Software Engineering. Innsbruck, Austria, 2004:242-252.
  • 6Bryce Ren6e C, Colbourn Charles J, Cohen Myra B. A framework of greedy methods for constructing interaction test suites//Proceedings of the 27th International Conference on Software Engineering (ICSE2005). St. Louis, Missouri, USA, 2005:146-155.
  • 7Cohen Myra B, Gibbons Peter B, Mugridge Warwick B, Col- bourn Charles J. Constructing test suites for interaction tes- ting//Proceedings of the 25th International Conference on Software Engineering(ICSE2003). Portland, Oregon, USA, 2003:38-48.
  • 8Nurmela Kari J. Upper bounds for covering arrays by tabu search. Discrete Applied Mathematics, 2004, 138(1-2): 143-152.
  • 9Ghazi S A, Ahmed M A. Pair-wise test coverage using ge- netic algorithms//Proceedings of the 2003 Congress on Evo- lutionary Computation. Canberra, Australia, 2003, 2: 1420- 1424.
  • 10Shiba Toshiaki, Tsuchiya Tatsuhiro, Kikuno Tohru. Using artificial life techniques to generate test eases for combinato- rial testing//Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC2004). Hong Kong, China, 2004:72-78.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部