摘要
证明了耗散孤立波方程的惯性分形集的存在性 .主要结果是 :定理 若u0 ∈H10 (Ω) ,v ,β ,α >0 ,其中Ω =[- L2 ,L2 ],L >0 ,则问题ut+vuxxxx+αuux+uxxx+ βu=fu(x ,0 ) =u0u| Ω =ux| Ω =0生成的半群S(t)在V中关于 (S(t) ,B)
The existence of the inertial fractional set is proved for the dissipative soliton equations. The main result is the following theorem.\;Theorem\ Suppose u\-0∈H\+1\-0(Ω), v,β,α>0, where Ω=[-L2, L2] with >0. Then the semigroup S(t) generated by the problemu\-t+vu\-\{xxxx\}+αuu\-x+u\-\{xxx\}+βu=f u(x, 0)=u\-0 u|\-\-\{Ω\}=u\-x|\-\-\{Ω\}=0has an inertial fractal set for (S(t), B) in H\+1\-0(Ω)
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2000年第6期645-647,共3页
Journal of Southwest China Normal University(Natural Science Edition)