期刊文献+

有界扰动下磁弹体系统的混沌振动及其滑模变结构控制

Chaos of Magneto- Elastic System under Bounded Disturbance and its Sliding Mode Control
下载PDF
导出
摘要 为深入研究磁弹体系统的非线性动力学特征,在其对应数学模型的基础上进行复杂动力学分析得出其相轨迹图、Poincaré映射图和Lyapunov指数,这些特征加深了对其的认识,同时也证明该磁弹体系统中含有混沌吸引子;为消除系统的混沌态,基于一种滑模变结构控制方法的数学分析论证推导,将处于混沌态的磁弹体系统的状态变量x、y、z、u先后控制到任意固定点和任意周期轨道;仿真结果表明,该方法能够使系统严格地跟踪参考轨道,且具有控制的过渡时间较短、对外界干扰不敏感等优点,同时也为相关磁弹体系统混沌态的有效控制提供了借鉴。 In order to study the nonlinear dynamics behavior of the magneto--elastic system, the chaotic complex dynamic characteristics of the four--dimensional nonlinear equations were analyzed, including the space trajectory, the Poincar6 map and the Lyapunov exponents. These characteristics enable us to know them deeply, and indicate that the system contains chaotic attractor. In order to eliminate the chaotic vibration, the state variables x, y, z and u could be controlled to any fixed point and any periodic orbit by means of sliding mode control method. The results show that using sliding mode method can make the system track target orbit strictly and smoothly with short transition time, and its insensitivity to noise disturbance is shown. It also provides a reference for relevant chaos control in other magneto--elastic sys- tems,
出处 《计算机测量与控制》 北大核心 2014年第2期393-396,共4页 Computer Measurement &Control
关键词 磁弹体系统 混沌分析 混沌控制 LYAPUNOV指数 magneto--elastic system chaos analysis chaos control Lyapunov exponents
  • 相关文献

参考文献17

  • 1Chu Y D, Zhang J G, Li X F. Chaos and chaos synchronization for a non-autonomous rotational machine systems [-J. Nonlinear A- nalysis: Real World Applications, 2008, 9 (4). 1378-1393.
  • 2Che Y Q, Wang J, Zhou S S. Robust synchronization control of coupled chaotic neurons under external electrical simulation [J]. Chaos, Solitons g Fractals, 2009, 40 (3): 1333-1342.
  • 3陈关荣.控制非线性动力系统的混沌现象[J].控制理论与应用,1997,14(1):1-6. 被引量:34
  • 4Wu W J, Chen Z Q. Complex nonlinear dynamics and controlling chaos in a cournot duopoly economic model [J]. Nonlinear Analy- sis: Real World Applications, 2010, 11 (5): 4363-4377.
  • 5Gao M, Shi H H, Li Z Z. Chaos in a seasonally and periodically forced phytoplankton-zooplankton system [J]. Nonlinear Analy- sis: Real World Applications, 2009, 10 (3) : 1643 - 1650.
  • 6Lorenz E N. Deterministic nonperiodie low [J]. Journal o5 the at- mospheric sciences, 1963.
  • 7Moon F C, Holmes P J. Magneto-elastic strange attractor [J]. Journal of Sound and Vibration. 1979, 65 (2): 275 -296.
  • 8Takashi Hikihara, Toshiaki Kawagoshi. An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos [-J. Physics LettersA, 1996, 211 (1): 29-36.
  • 9Takashi Hikihara, Masato Touno, Toshiaki Kawagoshi. Experi- mental stabilization of unstable periodic orbit in magneto- elastic chaos by delayed feedback control ['J. International Journal of Bi- furcation and Chaos, 1997, 7 (12) 2837-2846.
  • 10Aline S P, Marcelo Amorim S. A multiparameter chaos control method based on OGY approach [J]. Chaos, Solitons Fraetals, 2009, 40 (3): 1376-1390.

二级参考文献40

  • 1Otte E,Grebogic T,Yorke J A 1990 Phys. Rev. Lett. 64 1196
  • 2Shinbrot T, Grebogic T, Otte E 1993 Nature 363 411
  • 3Nitsche G,Dressler U 1992 Physica D 58 153
  • 4Tan Y,He X T,Chen S 1993 Chin. Phys. Lett. 10 321
  • 5Shinbrot T,Otte E,Grebogic T 1990 Phys. Rev. Lett. 65 3215
  • 6Kennedy J, Eberhart R 1995 IEEE Int. Conf. Neural Networks Perth, Australia 1942
  • 7Eberhart R, Kennedy J 1995 Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan 39
  • 8van Wyk M A, Steeb W H 1997 Chaos in Electronics (Dordrecht: Kluwer Academic Pulishers)
  • 9Chen G. Controlling Chaos and Bifurcation in Engineering Systems[M]. Boca Raton:CRC Press,1999.
  • 10Ott E, Grebogi C, Yorke J A. Controlling chaos[J].Phys Rev Lett A,1990,64(11):1196-1199.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部