期刊文献+

基于球窝结构冷却通道的强化传热数值及实验研究 被引量:5

Numerical and Experimental Study of Heat Transfer Enhancement Based on the Structure of Cooling Channels With Dimples
下载PDF
导出
摘要 球窝作为一种小流阻的强化传热结构,在微型换热器中有较大的发展前景.该文采用实验与数值相结合的方法,研究层流条件下布置球窝结构的矩形通道内部的流动与换热特性,比较了不同球窝深度、不同Reynolds(雷诺)数对其强化换热特性的影响,并与光滑结构进行了对比.研究结果表明:随着Reynolds数的增加,换热效果逐渐增强.在3种Reynolds数(Re=500,1000,1500)工况下,在球窝深度直径比在0.1~0.2之间时,球窝内部均存在流动分离且分离点位于球窝中心之前,球窝换热特性最好,与实验得出深度直径比为0.2时换热效果最好相吻合.在同一Reynolds数条件下,随着球窝深度的增加,其阻力特性逐渐降低.综合热特性随着Reynolds数的增大呈现下降趋势. The dimple has bright prospect in the micro heat exchanger for smaller flow resist- ance and better heat transfer enhancement characteristics. Numerical and experimental study of heat transfer enhancement based on the structure of cooling rectangular channels with dimples was carried out. The flow structure and heat transfer characteristics in laminar air flow with dif- ferent dimple depths and different Reynolds numbers were investigated, and the results were compared with those of the corresponding fiat cases. The results show that: with the increasing Reynolds number, the heat transfer effect gradually increases; there exists the best dimple depth between 1 nun and 2 mm at the 3 Reynolds numbers (Re = 500, 1 000, 1 500) ; the flow separation occurs inside the dimple and the separation point is located in front of the dimple center, which results in the best heat transfer characteristics; at the same Reynolds number, the resistance characteristics decrease with the increasing dimple depth, and the thermal per- formance decreases with the increasing Reynolds number.
出处 《应用数学和力学》 CSCD 北大核心 2014年第3期254-263,共10页 Applied Mathematics and Mechanics
关键词 球窝 换热 数值模拟 实验 dimple heat transfer numerical simulation experiment
  • 相关文献

参考文献15

  • 1Bearman P W, Harvey J K. Control of circular cylinder flow by the use of dimples [ J]. A/AA Journal, 1993, 31(10) : 1753-1756.
  • 2Sherrow L D, Ligrani P M, Chudnovsky Y. Effects of exterior surface dimples on heat transfer and friction factors for a cross-flow heat exchanger[ J]. Journal of Enhanced Heat Transfer, 2006, 13(1): 1-16.
  • 3Moon H K, O' Connell T, Glezer B. Channel height effect on heat transfer and friction in a dimpled passage[ J ]. Journat of Engineering for Gas Turbines and Power, 2000, 122 (2) : 307-313.
  • 4Mahmood G I, Hill M L, Nelson D L, Ligrani P M, Moon H-K, Glezer B. Local heat transfer and flow structure on and above a dimpled surface in a channel[ J]. Journal of Turbomachin- ery, 2001, 123(1) : 115-123.
  • 5Elyyan M A, Tafti D K. Flow and heat transfer characteristics of dimpled multilouvered fms [J]. Journal of Enhanced Heat Transfer, 2009, 16(1) : 43-60.
  • 6XIAO Nian, ZHANG Qiang, Ligrani P M, Mongia R. Thermal performance of dimpled surfaces in laminar flows[J]. Internntional Journal of Heat and Mass Transfer, 2009, 52(7/8): 2009- 2017.
  • 7Fischer M, Juric D, Poulikakos D. Large convective heat transfer enhancement in microchan- nels with a train of coflowing immiscible or colloidal droplets [ J ]. Journal of Heat Transfer, 2010, 132(11) : 112402.
  • 8Mahmood G I, Sabbagh M Z, Ligrani P M. Heat transfer in a channel with dimples and protru- sions on opposite walls[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(3) : 275- 283.
  • 9Chang S W, Chiang K F, Chou T C. Heat transfer and pressure drop in hexagonal ducts with surface dimples[J]. Experimental Thermal and b-uid Science, 2010, 34(8) : 1172-1181.
  • 10Park J, Desam P R, Ligrani P M. Numerical predictions of flow structure above a dimpled surface in a channel[ J ]. Numerical Heat Transfer, Part A: Applications : An International Journal of Computation and Methodology, 2004, 45( 1 ) : 1-20.

二级参考文献57

  • 1TUCKERMAN D B, PEASE R F W. High-perform- ance heat-sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2 (5):126-129.
  • 2PHUTI'HAVONG H P, ABDELGAWAD M. Micro- channel heat sinks: an overview of the stat of-the-art [J].Nanoscale and Microscale Thermophysical Engi- neering, 2004, 8 (3):183-205.
  • 3LEE P S, GARIMELLA S V, LIU D. Investigation of heat transfer in rectangular microchannels [J]. Inter- national Journal of Heat and Mass Transfer, 2005,48 (9) : 1688-1704.
  • 4LEE P S, GARIMELLA S V. Thermally developing flow and heat transfer in rectangular microchannels ofdifferent aspect ratios EJ~. International Journal of Heat and Mass Transfer, 2006, 49 (17/18): 3060- 3067.
  • 5SUI Y, TEO C J, LEE P S, et al. Fluid flow and heat transfer in wavy microchannels [J]. International Journal of Heat and Mass Transfer, 2010,53 (13/14) : 2760-2772.
  • 6FISCHER M, JURIC D, POULIKAKOS D. Large convective heat transfer enhancement in microchannels with a train of coflowing immiscible or colloidal drop- lets[J].Journal of Heat Transfer, 2010, 132(11): 112402.
  • 7AFANASYEV V N, CHUDNOVSKY Y P, LEON- TIEV A I, et al. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate[J]. Experimental Thermal and Fluid Science, 1993, 7 (1):1-8.
  • 8MOON H K, O'CONNEL T, GLEZER B. Channel height effect on heat transfer and friction in a dimple passage [J]. Journal of Engineering for Gas Turbines and Power, 2000, 122 (2):307-313.
  • 9LIGRANI P M, HARRISON J L, MAHMMOD G I, et ak Flow structure due to dimple depressions on a channel surface [J]. Physics of Fluid, 2001,13 (11) : 3442-3451.
  • 10MAHMOOD G I, SABBAGH M Z, LIGRANI P M. Heat transfer in a channel with dimples and protru- sions on opposite walls [J]. Journal of Thermophysics and Heat Transfer, 2001, 15(3): 275-283.

共引文献12

同被引文献37

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部