摘要
在无界区域Rn(n≤3)上研究了如下具有线性记忆项的随机波动方程的渐进行为u tt+αu t-k(0)Δu+λu+f(x,u)-∫∞0k'(s)Δu(t-s)ds=g(x)+h(x)dωdt。其中,当n=3时非线性项f具有次临界增长率,当n=1,2时f可具有任意增长率。运用解的一致估计方法在H1(Rn)×L2(Rn)×M1(Rn)上证明了对应的随机动力系统拉回吸引子的存在性。
We study the longtime behavior for the following stochastic wave equation defined on the unbounded domain Rn() with a linear memory tern: utt + αut -k(O)Au + △u + f( x , u) - dω/dt Where,n≤ 3 the nonlinear tem f has an arbitrary fkt(s)Au(t -s)ds =g(x) +h(x)- Where, n growth for n = 1,2 and is subcritical for n = 3. We use the uniformestimates method to prove the existence of pullback attractor for the corresponding random dynamical system in H1 ( Rn ) L2 (Rn) x M1 (Rn).
出处
《大连民族学院学报》
CAS
2014年第1期49-55,共7页
Journal of Dalian Nationalities University
关键词
拉回吸引子
记忆项
随机波动方程
无界区域
pullback attractor
memory term
stochastic wave equation
unbounded domain