期刊文献+

微波器件微放电阈值计算的快速单粒子蒙特卡罗方法 被引量:6

A fast single particle Monte-Carlo method of computing the breakdown threshold of multipactor in microwave device
原文传递
导出
摘要 为了计算微波器件的微放电阈值,提出了一种快速单粒子蒙特卡罗方法.该方法对二次电子出射能量、出射角度和相位等参数进行随机处理,结合四阶龙格库塔法和Furman模型模拟了电子运动和二次电子发射系数,并以多次连续碰撞的二次电子发射系数的算数平均值作为微放电效应发生的判据.以平板传输线横电磁模式为研究对象,分别采用快速单粒子蒙特卡罗方法、统计模型、传统蒙特卡罗方法以及粒子模拟方法计算其微放电阈值和敏感区域.计算结果表明,该方法不仅具有与统计模型和粒子模拟方法相当的计算精度,而且比统计模型方法的适应性更强,比传统蒙特卡罗方法的稳定性更好,比粒子模拟方法的计算效率高几十倍以上. To compute the breakdown thresholds of multipactor in microwave devices, a fast single particle Monte-Carlo (SP- MC) method is presented, which considers the random nature of secondary electrons and their initial energies, phases and angles. With Runge-Kutta method and Furman model, the motion of the electron and the secondary electron yield (SEY) of the wall of the device are computed. An effective SEY is regarded as a criterion to estimate whether multipactor occurs, which is computed by averaging the SEYs for all impacts. As an example, the multipactor in a transmission line composed of parallel plates is investigated with the presented SP-MC method, traditional Monte-Carlo method, statistical theory method and particle-in-cell method separately. The results obtained from the SP-MC method accord well with those from the statistical theory method and particle-in-cell method, including the results of the susceptibility zones, break thresholds on specific products of frequency and gap space. Moreover, the SP-MC method is more adaptive than the statistical theory method, more stable than the traditional Monte-Carlo method and much more efficient than the particle-in-cell method.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第4期317-321,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50977076)资助的课题~~
关键词 微放电 单粒子蒙特卡罗方法 平板传输线 敏感区域 multipactor, single particle Monte-Carlo method, parallel plates transmission line, susceptibility zone
  • 相关文献

参考文献2

二级参考文献19

  • 1郝建红,丁武,董志伟.磁绝缘传输线振荡器中的次级电子倍增现象[J].物理学报,2006,55(9):4789-4794. 被引量:12
  • 2Barker R J, Schamiloglu E. High power microwaves sources and technologies[M]. Beijng: Tsinghua University Press, 2005.
  • 3Vaughan J R M. Multipactor[J]. IEEE Trans Electron Dev, 1988,35(7) : 1172-1188.
  • 4Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans on Electron Dev, 1989,36(9): 1963 1967.
  • 5Kishek R A, Lau Y Y, Ang I. K, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Phys Plasmas,1998,5(5): 2120-2126.
  • 6Kishek R A, Lau Y Y. A novel phase focusing mechanism in multipactor discharge[J]. Phys Plasmas, 1996,3(5) : 1481-1483.
  • 7Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high power mierowaves[J]. IEEE Trans on Plasma Sci ,1998,26 (3) : 296-303.
  • 8Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. J Appl Phys, 1999,86 (3) : 1724-1728.
  • 9Kryazhev A, Buyanova M, Semenov V, et al. Hybrid resonant modes of two sided multipactor and transition to the polyphase regime[J]. Phys Plasmas,2002,9(11) : 4736-4742.
  • 10Semenov V, Kryazhev A, Anderson D, et al. Multipactor suppression in amplitude modulated radio frequency fields[J]. Phys Plasmas,2001,8(11):5034-5039.

共引文献35

同被引文献82

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部