期刊文献+

不确定分数阶时滞系统的鲁棒稳定性判定准则 被引量:7

Robust stability criteria for uncertain fractional order systems with time delay
原文传递
导出
摘要 基于退化分析方法提出一种判定准则,用于分析不确定分数阶时滞系统的稳定性.介绍一种分数阶积分算子的有理逼近方法,在此基础上采用整数阶系统逼近分数阶系统,从而将难以判定的分数阶系统稳定性问题转化为由逼近偏差作为不确定项的整数阶系统稳定性问题进行处理.利用积分不等式法研究逼近系统稳定性,得到LMI形式的稳定性判据.仿真结果表明,所提出方法能够有效分析这类系统的稳定性. Based on model approximation, the problem of stability analysis for uncertain fractional order systems with time-varying delay is proposed. Firstly, a rational approximation method is introduced for fractional order systems. Based on the above method, the fractional order systems are transformed into the integer order systems whose uncertainties are approximation error. Afterwards, integral inequality approach is used to analyze the stability of the approximation system, obtaining a robust stability criteria denoted by LMI. Theoretic proof and numerical examples are provided to illustrate the effectiveness and the availability of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2014年第3期511-516,共6页 Control and Decision
基金 国家自然科学基金项目(60974103 61004017) 国家863计划项目(2011AA7034056)
关键词 分数阶系统 模型逼近 时变时滞 鲁棒稳定性 fractional order system model approximation time-varying delay robust stability
  • 相关文献

参考文献6

二级参考文献120

共引文献162

同被引文献58

  • 1刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 2薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:163
  • 3Lifeng Wu,Sifeng Liu,Ligen Yao,Shuli Yan,Dinglin Liu.Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation . 2012
  • 4Iraj Kheirizad,AliAkbar Jalali,Khosro Khandani.Stabilisation of unstable FOPDT processes with a single zero by fractional-order controllers[J]. International Journal of Systems Science . 2013 (8)
  • 5Der-Chiang Li,Che-Jung Chang,Chien-Chih Chen,Wen-Chih Chen.Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case[J]. Omega . 2011 (6)
  • 6Liu S F,Forrest J,Yang Y J.Advances in grey systems research. The Journal of Grey System . 2013
  • 7Igor Podlubny.Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal . 2002
  • 8Stewart GW.On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Review . 1977
  • 9Xiao X P,Guo H,Mao S H.The modeling mechanism,extension and optimization of grey GM 1,1 model. Journal of Applied Mathematics . 2014
  • 10Olfati-Saber R. Flocking for multi-agent dynamicsystem: algorithms and theory [J]. IEEE TransAutomat Contr, 2006 , 51(3) : 401.

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部