期刊文献+

基于遗传模拟退火算法的机动多目标数据关联问题研究 被引量:4

Research on Maneuvering Multiple Targets Data Association Problem with Genetic Simulated Annealing Algorithms
下载PDF
导出
摘要 应用遗传模拟退火算法将机动多目标的数据关联问题表达为一类约束的组合优化问题研究时 ,可极大地提高密集多回波环境下系统跟踪多机动目标的精度和可靠性。仿真结果表明 ,遗传模拟退火算法明显地优于独立地使用遗传算法和模拟退火算法。 When it is represented as a sort of constraint combinational optimization problem , the data association problem of maneuvering multiple targets can be studied by genetic simulated annealing algorithms, which can greatly improve the tracking multi maneuvering targets precision & reliability of the system in higher dense multi return environment. The simulation results indicate that genetic simulated annealing algorithm is obviously superior to genetic algorithm or simulated annealing algorithm separately.
出处 《华东船舶工业学院学报》 2000年第6期32-37,共6页 Journal of East China Shipbuilding Institute(Natural Science Edition)
关键词 数据关联 遗传算法 模拟退火算法 机动多目标跟踪 data association genetic algorithm simulated annealin
  • 相关文献

参考文献7

  • 1康立山.非数值并行算法(第一册)-模拟退火算法[M].北京:科学出版社,1998..
  • 2董志荣.舰艇指标系统的理论基础[M].北京:国防工业出版社,1995..
  • 3何友,谭庆海,蒋蓉蓉.多传感器综合系统中的航迹相关算法[J].火力与指挥控制,1989,14(1):1-12. 被引量:35
  • 4袁富宇.用于多目标数据互联的模拟退火方法[J].系统工程理论与实践,1998,18(10):64-68. 被引量:9
  • 5拉姆-兰德P·森弗 威廉H·贝利.模糊逻辑应用于多传感多目标相关[J].情报指挥控制系统与仿真技术,1998,(10):32-41,38.
  • 6周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996..
  • 7刘勇 康立山 等.非数值并行算法(第二册)-遗传算法[M].北京:科学出版社,1998..

二级参考文献6

  • 1张德富,计算机研究与发展,1995年,32卷,2期
  • 2胡山鹰,系统工程理论与实践,1995年,15卷,9期,73页
  • 3田澎,控制与决策,1994年,9卷,3期
  • 4靳蕃,神经网络与神经计算机,1993年
  • 5张兰秀(译),跟踪和数据互联
  • 6何友,谭庆海.多传感器系统分类研究[J]火力与指挥控制,1988(02).

共引文献63

同被引文献35

  • 1秦卫华,胡飞,秦超英.一种简化的联合概率数据关联算法[J].西北工业大学学报,2005,23(2):276-279. 被引量:15
  • 2吴丹,冯新喜.多雷达多目标航迹起始算法研究[J].空军工程大学学报(自然科学版),2006,7(1):16-19. 被引量:11
  • 3Bar-Shalom Y. Extension of the Probabilistie Data Association Filter in Multitarget Tracking[C]//Proceedings of the Fifth Symposium on Non-linear Estimation. 1974 : 16-21.
  • 4Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975,11 (9): 451- 460.
  • 5Turkmen I,Guney K. Cheap Joint Probabilistic Data Association with Adaptive Neuro-Fuzzy Inference System State Filter for Tracking Multiple Targets in Cluttered Environment[J].International Journal of Electronics and Communications, 2004:349-357.
  • 6Roecker J A, Phillis G L. Suboptimal Joint Probabilistic Data Association [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993,29 (2) : 510-517.
  • 7Fitzgerald R J. Development of practical PDA logic for multitarget tracking by microprocessor[M]. Multitarget-Multisensor Tracking.. Advanced Appliactions. 1990: 220-932.
  • 8Roecker J A,Phillis G L, A Class of Near Optimal JPDA Algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(2) : 504-510.
  • 9Zhou B, Bose N K. Multitarget Tracking in Clutter: Fast Algorithms for Data Association[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993,29(2) : 352-363.
  • 10Singer R A, Stein J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C] // Proceedings of the 1971 IEEE Conferenee on Decision and Control. Miami Beach, 1971 : 171-175.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部