期刊文献+

一种集成贝叶斯决策的视频烟雾检测新方法 被引量:6

New video smoke detection method using Bayesian decision
下载PDF
导出
摘要 研究将贝叶斯决策应用于自适应神经-模糊推理系统(ANFIS)的视频烟雾检测系统。提取视频烟雾特征,通过减法聚类和混合学习算法,确定并优化得到ANFIS实例,引入贝叶斯决策对ANFIS输出进行检测判别。仿真实验表明,ANFIS比其他烟雾检测算法具备更好的检测性能,而基于最小风险的贝叶斯决策可进一步提高检测率和降低虚警率,能更好地满足实际应用的需求。 The Bayesian decision method is studied to further improve the performance of detecting video smoke using Adaptive Neuro-Fuzzy Inference System(ANFIS). Smoke features are extracted from video sequences. The subtractive clustering and hybrid learning rules are used to train ANFIS. Detection outputs are determined by performing proposed Bayesian decision rules on the outputs of ANFIS. Experimental results show that the detection performance of ANFIS is better than that of other smoke detection algorithms, and the introduction of minimum risk-based Bayesian decision rules further increases the detection rate and decreases the false alarm rate, which is more valuable for practical applications.
出处 《计算机工程与应用》 CSCD 2014年第3期173-176,共4页 Computer Engineering and Applications
基金 2011年度江南大学自主科研计划项目(No.JUSRP11125)
关键词 视频烟雾检测 烟雾特征分析 自适应神经模糊推理系统 贝叶斯决策 video smoke detection smoke feature analysis adaptive neuro-fuzzy inference system Bayesian decision
  • 相关文献

参考文献4

二级参考文献38

  • 1钱乐祥,泮学芹,赵芊.中国高光谱成像遥感应用研究进展[J].国土资源遥感,2004,16(2):1-6. 被引量:33
  • 2袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 3帅师,周平,汪亚明,周维达.基于小波的实时烟雾检测[J].计算机应用研究,2007,24(3):309-311. 被引量:21
  • 4Nobuyuki, Fujiwara, Kenji Terada. Extraction of a Smoke Region Using Fractal Cording[A]. International Symposium on Communications and Information Technologies[C]. 2004.
  • 5B Ugur Toreyin, Yigithan Dedeoglu, A Enis Cetin. Wavelet Based Real-Time Smoke Detection in Video[ A]. 13th European Signal Processing Conference[ C ]. 2005.
  • 6Xueming Shu, Hongyong Yuan, Guofeng Su, et al. A new method of laser sheet imaging-based fire smoke detection [J ]. Journal of Fire Sciences, 2006,24(2) : 95-104.
  • 7Khananian A, Fraser R H, Cihlar J. Automatic detection of fire smoke using artificial neural networks and threshold approaehes applied to AVHRR imagery [J ]. IEEE Transactions on Geoseienee and Remote Sensing, 2001,39(9) : 1859-1870.
  • 8Searle, Stephen J. Background modeling and target segmentation via modified Kalman filtering[A], in Proc of SPIE[C]. 2004.
  • 9吕普轶.基于普通CCD摄像机的火灾探测技术的研究[D].哈尔滨工程大学,2007.
  • 10Chart W L, Choi H, Baraniuk R. Coherent muhiscale image proceasing using dual-tree quaternion wavelets[J]. IEEE Transactions on Image Processing, 2008,17(7) : 1069--1082.

共引文献78

同被引文献66

  • 1邓彬,刘辉,连国云,陈静.基于视频的烟雾检测[J].长沙大学学报,2007,21(5):87-89. 被引量:11
  • 2文春勇,朱信忠,徐慧英,赵建民.基于最小风险的贝叶斯决策理论相关反馈方法[J].计算机应用研究,2009,26(3):1171-1173. 被引量:2
  • 3袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 4王飞,李定主.模式识别中贝叶斯决策理论的研究[J].科技情报开发与经济,2007,17(7):165-166. 被引量:8
  • 5Tung T X, Kim J M. An effective four--stage smoke--detection algorithm using video images for early fire-- alarm systems [J]. Fire Safety Journal, 2011, 46 (5) : 276 - 282.
  • 6Favorskaya M N, Levtin K E. Early video - based smoke detection in outdoor spaces by spatio - temporal clustering [J]. Internation- al Journal of Reasoning--based Intelligent Systems, 2013, 5 (2) : 133 - 144.
  • 7Brovko N, Bogush R, Ablameyko S. Smoke detection algorithm for intelligent video surveillance system [J]. Computer Science Journal of Moldova, 2013, 21 (1).
  • 8Zheng G,Oe S.Thin and slow smoke detection by using frequency image[J].IEEE Transactions on Electronics,Information and Systems,2010,130(7):1168-1176.
  • 9Texas Instruments Incorporated.Syslink user guide[EB/OL].[2014-12-04].http://processors.wiki.ti.com/index.php/Sys Link_User Guide.
  • 10Yamagishi H,Yamaguchi J.Fire flame detection algorithm using a color camera[C]//Micromechatronics and Human Science.Nagoya:IEEE Press,1999:255-260.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部