期刊文献+

纤维沥青混凝土五单元八参数粘弹性力学模型 被引量:9

Viscoelastic Mechanical Model with Five Units and Eight Parameters for Fiber Reinforced Asphalt Concrete
原文传递
导出
摘要 为了准确描述纤维沥青混凝土的粘弹性变形性能,在分析其蠕变全过程变形特征和常用粘弹性模型的基础上,提出了纤维沥青混凝土五单元八参数粘弹性力学模型。通过不同纤维体积率和长径比的纤维沥青混凝土小梁弯曲蠕变试验,求解模型参数,研究纤维体积率和长径比对模型参数及沥青混凝土粘弹性能的影响,建立了五单元八参数模型表征的考虑纤维含量特征参数影响的纤维沥青混凝土粘弹性本构方程,并进行了粘弹性分析。研究结果表明:五单元八参数模型能表征纤维沥青混凝土蠕变全过程的粘弹性变形特征,与蠕变试验结果具有较好的相关性;纤维含量特征参数能综合反映纤维体积率和长径比对沥青混凝土粘弹性能的影响,在所研究的试验范围内,纤维沥青混凝土最佳纤维体积率为0.348%,长径比为324,纤维含量特征参数为1.128。 In order to accurately describe the viscoelastic deformation behavior of fiber reinforced asphalt concrete, the viscoelastic mechanical model with five units and eight parameters for fiber reinforced asphalt concrete was put forward, based on the analysis of its whole process creep deformation behavior and common viscoelastic models. Through the creep tests on asphalt concrete beams with polyester fibers of different volume ratios and aspect ratios, the parameters in the model were solved, and the influence of fiber volume ratio and fiber aspect ratio on parameters of the model and viscoelastic performance of asphalt concrete were studied. Finally, the viscoelastic constitutive equation of asphalt concrete with the influence of fiber content characteristic parameters considered was established for viscoelastic analysis. The results show that the new model has a good relationship with the results of creep experiment, and can better characterize the fiber reinforced asphalt concrete's viscoelastic deformation characteristics of the whole creep process. The fiber content characteristic parameters can comprehensively reflect the influence of the fiber volume ratio and fiber aspect ratio on the viscoelastic behavior of asphalt concrete, and within the scope of the test in this article, the optimum fiber volume ratio in asphalt concrete is 0. 348%, the optimum fiber aspect ratio is 324 and the optimum fiber contentcharacteristic parameter is 1. 128.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2014年第2期1-8,34,共9页 China Journal of Highway and Transport
基金 国家自然科学基金项目(50678159)
关键词 道路工程 纤维沥青混凝土 蠕变试验 粘弹性能 力学模型 纤维含量特征参数 road engineering fiber reinforced asphalt concrete creep test viscoelastic perform-ance mechanical model fiber content characteristic parameter
  • 相关文献

参考文献11

  • 1张久鹏,徐丽,王秉纲.沥青混合料蠕变模型的改进及其参数确定[J].武汉理工大学学报(交通科学与工程版),2010,34(4):699-702. 被引量:12
  • 2徐世法.表征沥青及沥青混合料高低温蠕变性能的流变学模型[J].力学与实践,1992,14(1):37-40. 被引量:37
  • 3GONZALEZ J M, MIQUEL CANET J, OLLER S, etal. A Viscoplastic Constitutive Model with Strain Rate Variables for Asphalt Mixtures- Numerical Simulation[J]. Computational Materials Science, 2007,38(4) :543-560.
  • 4BANDYOPADHYAYA R,DAS A,BASU S. Numeri- cal Simulation of Mechanical Behaviour of Asphalt Mix[J].Construction and Building Materials, 2008,22 (6) : 1051-1058.
  • 5RAHMANI E,DARABI M K,ABU AL-RUB R K, et al. Effect of Confinement Pressure on the Nonlinear-viscoelastic Response of Asphalt Concrete at High Temperatures[J]. Construction and Building Materi- als, 2013,47 : 779-788.
  • 6郭乃胜,赵颖华,孙略伦.纤维沥青混凝土的蠕变特性试验研究[J].中外公路,2007,27(2):124-127. 被引量:10
  • 7STASTNA J, ZANZOTTO L, VACIN O J. Viscosity Function in Polymer-modified Asphalt[J]. Journal of Colloid and Interface Science, 2003,259 (1) : 200-207.
  • 8SUN L, ZHU Y T. A Serial Two-stage Viscoelastic viscoplastic Constitutive Model with Thermodynami- cal Consistency for Characterizing Time-dependent Deformation Behaviour of Asphalt Concrete Mixtures[J]. Construction and Building Materials, 2013, 40: 584-595.
  • 9KALHAN M, ANIMESH D, SUMIT B. Mechanical Behavior of Asphalt Mix: An Experimental and Nu- merical Study[J]. Construction and Building Materi- als,2012,27(1) :545-552.
  • 10闵召辉,王晓,黄卫.环氧沥青混凝土的蠕变特性试验研究[J].公路交通科技,2004,21(1):1-3. 被引量:15

二级参考文献17

  • 1郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1-7. 被引量:26
  • 2Judycki J.Non-linear viscoelastic behaviour of conventional and modified asphaltic concrete under creep[J].Mater Struct,1992,25:95-101.
  • 3Sousa J B,Weissman S L,Deacon J A,et al.Permanent deformation response of asphalt aggregate mixes[R].Technical Report:Strategic Highway Research Program (SHRP),SHRP-A-415.Washington D C,Berkeley:Institute of Transportation Studies of University of California,1994.
  • 4Erkens S M J G,Liu X,Scarpas A.3D finite model for asphalt concrete response simulation[J].Int J Geomech,2002,2(3):305-330.
  • 5Blab R,Harvey J T.Modeling measured 3D tire contact stress in a viscoelastoc FE pavement model[J].Int J Geomech,2002,2(3):271-290.
  • 6Witczak M W,Kaloush K,Pellinen T.Simple performance test for Superpave mix design[R].NCHRP Report 465,Washington:National Academy Press,2002:6-13.
  • 7中华人民共和国交通部.公路工程沥青及沥青混合料试验规程(JTJ052-2000)[S].北京:人民交通出版社,2000..
  • 8Moussa, Gomaa K. Effect of Addition of Short Fibers of Poly-acrylic and Polyamide to Asphalt Mixtures[J]. AEJAlexandria Engineering Journal, 2003, 42 (3) : 329-336.
  • 9Chen Jian- Shiuh, Lin Kuei- Y. I. Mechanism and Behavior of Bitumen Strength Using Fibers[J]. Journal of Materials Science, 2005, 40(1): 87-95.
  • 10Lee S. Joon, Rust Jon P. , Hamouda Hechmi, Kim Y.Richard, Bordan Roy H. Fatigue Cracking Resistance of Fiber-reinforced Asphalt Concrete[J]. Textile Research Journal, 2005(2).

共引文献1017

同被引文献88

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部