期刊文献+

基于Haar小波变换和关联加权的LDA方法 被引量:1

LDA based on Haar wavelet transform and related weighting
下载PDF
导出
摘要 线性判别分析(LDA)是人脸识别系统中用来降维的主要技术之一,但却受到小样本问题的限制,从而使其不能有效发挥其性能.本文通过把权值的概念引入LDA之中,使关联加权LDA方法有效地改善了小样本问题,但是它的分类效果却并不理想.为了解决这个问题,本文提出了基于Haar小波的关联加权LDA方法,该方法在Haar小波子带基础上,应用关联加权LDA方法,既解决了小样本问题,又改善了分类的效果.利用ORL及FERET两大人脸数据库进行了实验,其结果表明与最先进的几种方法相比较,HWRW-LDA方法具有更好的识别性能. As is known to all of us,linear discriminative analysis (LDA) is one of the principal techniques used in face recognition systems.It can be worked on the whole face image,but LDA is limited by Small Sample Size problem.Related weighting LDA (RW-LDA) addresses the SSS problem by using conception of weighting,however,the classification of RW-LDA is not well.To address this problem,Related Weighting LDA based on Haar Wavelet (HWRW-LDA) which applying the RW-LDA on Haar wavelet subband is proposed in this paper.It improved classification performance as well as addressing the SSS problem.Experiments on ORL and FERET face database clearly demonstrate this and the graphical comparison of the algorithms clearly show that proposed method gets the better recognition performance comparing with the latest approaches.
作者 武莹 李俊州
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期33-36,45,共5页 Journal of Central China Normal University:Natural Sciences
基金 河南省教育厅科学技术研究重点项目(13A520367).
关键词 线性判别分析 人脸识别 关联加权 HAAR小波 LDA face recognition related weighting Haar wavelet
  • 相关文献

参考文献8

  • 1Zhang Z,Wang J,Zha H.Adaptive manifold learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(1):131-137.
  • 2Wright J,Yang A Y,Ganesh A.Robust face recognition via sparse representation[J].IEEE Trans Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 3Yan S,Liu J,Tang X.A Parameter-free framework for general supervised subspace learning[J].IEEE Transactions on Information Forensics and Security,2007,2(1):69-76.
  • 4Connolly J F,Granger E,Sabourin R.An adaptive classification system for video-based face recognition[J].Information Sciences,2012,192(1):50-70.
  • 5Hafiz F,Shafie A,Mustafah Y M.Face recognition from single sample per person by learning of generic discriminate vectors[J].Preceding Engineering,2012,45 (1):465-472.
  • 6Xie Z,Liu G,Fang Z.Face recognition based on combination of human perception and local binary pattern[J].Lecture Notes in Computer Science,2012,72(2):365-373.
  • 7Jiang X,Mandal B,Kot A.Eigenfeature regularization and extraction in face recognition[J].IEEE Trans Pattern Analysis and Machine Intelligence,2008,30(3):383-394.
  • 8ArandjelovicO.Computationally efficient application of the generic shape-illumination invariant to face recognition from video[J].Pattern Recognition,2012,45(1):92-103.

同被引文献19

  • 1BANERJEE SWATI, MITRA, MADHUCHHANDA. Application of cross wavelet transform for ECG pattern analysis and classification [ J ]. IEEE Transactions on Instrumentation and Measurement, 2014,63 ( 2 ) : 326- 333.
  • 2ARJUNAN S P, KUMAR D K, NAIK G R. A machine learning based method for classification of fractal fea- tures of forearm sEMG using Twin Support Vector Ma- chines [ C ]//32nd Annual International Conference of the IEEE EMBS Buenos Aires,2010:4821-4-824.
  • 3MAHDI KHEZRI , MEHRAN JAHED. A Neuro-Fuzzy Inference System for sEMG-Based Identification of Hand Motion Commands [ J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 ( 5 ) : 1952-1960.
  • 4HARDEEP S RYAIT, ARORA A S, RAVINDER AGARWAL. Interpretations of Wrist/Grip Operations From SEMG Signals at Different Locations on Arm [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIR- CUITS AND SYSTEMS,2010,4(2) :101-111.
  • 5YANG SHANXIAO, YANG GUANGYING. Emotionrecognition of EMG based on improved L-M BP neural network and SVM [ J ]. Journal of Software, 2011,6 (8): 1529-1536.
  • 6梁奇,叶明,马文杰.滤除SEMG工频干扰的数字陷波器设计[J].计算机工程与应用,2009,45(17):61-63. 被引量:4
  • 7唐志刚,何爱军,谭慧玲.表面肌电检测系统上位机应用程序设计[J].北京生物医学工程,2010,29(5):479-482. 被引量:4
  • 8罗志增,熊静,刘志宏.一种基于WPT和LVQ神经网络的手部动作识别方法[J].模式识别与人工智能,2010,23(5):695-700. 被引量:13
  • 9刘忠宝,王士同.改进的线性判别分析算法[J].计算机应用,2011,31(1):250-253. 被引量:11
  • 10吴永亮,邱成,朱衡君,赵志华.基于DAQ-2204的微弱信号数据采集与分析系统[J].测控技术,2011,30(3):26-28. 被引量:8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部