期刊文献+

应用动态调制与干涉条纹形状测量二维角度 被引量:4

Measurement of two-dimensional angle using dynamic modulation and interference fringe shape
下载PDF
导出
摘要 采用四象限探测器接收干涉条纹进行位移测量时,干涉条纹的形状会影响各探测器之间的相位差。本文在建立干涉条纹形状与干涉夹角关系模型的基础上,提出了应用四象限探测器识别干涉条纹形状的方法。通过干涉条纹光强面积分运算方法,推导了干涉条纹形状参数与探测器信号相位差之间的理论公式,并给出了相位差与干涉夹角之间的关系。利用PZT匀速驱动参考镜的方法实现了干涉条纹的动态调制,提高了信号相位差的识别精度。通过椭圆拟合技术实现了相位差在(0,π)的高精度识别,并结合特定的正余弦累积运算实现了(-π,π)相位差的识别,从而完成了偏转角度方向的测量。相对传统CCD条纹形状识别方法,该方法扩大了角度测量范围,且更适合动态测量。与高精度自准直仪进行的比对实验表明,该方法在±300″的测量精度为3″。 When a four-quadrant detector is used to receive interference fringes to measure the displacement,the shapes of the interference fringes will affect the phase difference between the detectors.Based on the relationship model between the interference fringe shape and the interference angle,a method to recognize the shape of an interference fringe by the four-quadrant detector was presented.The theoretical formula about the shape parameters of interference fringes with the phase difference of signals obtained by the detector was deduced using the area integration of interference fringe intensity,and the relationship between phase difference and interference angle was given.The interference fringes were dynamically modulated by using a PZT to drive the reference mirror uniformly,and the recognition accuracy of phase difference of the signal was improved.As the phase difference from 0 to π was recognized in high precision through the ellipse fitting technology,and the phase difference in the range (-π,π) was recognized by combining a specific sinusoid and a cosine integral calculation,the deflection angles were measured successfully.Compared with the traditional recognition method that uses the shape of CCD stripe,this method expands the measurement range of the angle,so it is more suitable for dynamic measurement.Experiment results demonstrate that the precision of the proposed method is 3" for the range from 300" to 300",and the method owns higher precision as comparing with a high-precision autocollimator.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第2期274-280,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51175154 No.51275157) 湖北省杰出青年人才基金资助项目(No.2010CDA088) 湖北省教育厅优秀中青年科技创新团队资助项目(No.Q20101405 No.Q20101407) 湖北省科技厅资助项目(No.2010CDB03104)
关键词 角度测量 二维角度 干涉条纹 四象限探测器 动态调制 angle measurement two-dimensional angle interference fringe four quadrant detectordynamic modulation
  • 相关文献

参考文献10

二级参考文献57

共引文献43

同被引文献46

  • 1匡萃方,冯其波,刘斌.角锥棱镜用于激光直线度测量的特性分析[J].光学技术,2005,31(2):282-285. 被引量:10
  • 2王选择,赵新泽,谢铁邦.电感式测微仪的直接数字化处理研究[J].仪器仪表学报,2005,26(12):1248-1252. 被引量:11
  • 3姜坤,朱若谷.用迈克尔逊干涉仪测微定位工作台的位移[J].中国计量学院学报,2006,17(4):281-283. 被引量:8
  • 4黄玉波,栗大超,胡小唐,傅星,张文栋,胡春光.测量微悬臂梁曲率的相移显微干涉法[J].光学精密工程,2007,15(9):1398-1403. 被引量:6
  • 5Hedser van Brug. Phase-step calibration for phase-stepped interferometry[J]. Appl Opt, 1999, 38(16): 3549-3555.
  • 6C T Farrell, M A Player. Phase step measurement and variable step algorithms in phase-shifting interferometry[J]. Meas Sci & Technol, 1992, 3(10): 953-958.
  • 7C T Farrell, M A Player. Phase-step insensitive algorithm for phase-shifting interferometry[J]. Meas Sei & Technol, 1994, 5(6): 648- 652.
  • 8Bogdan Florin Ionita, Florin Garoi, Petre Catalin Logofatu, et al.. PZT calibration[J]. Optik-International Journal for Lightand Electron Optics, 2013, 124(17): 2803-2806.
  • 9Kinnstaetter K, Lohmann A W, Schwider J, et al.. Accuracy of phase shifting interferometry[J]. Appl Opt,1988, 27(24): 5082-5089.
  • 10Cheng YY, Wyant J C. Phase shifter calibration in phase-shifting interferometry[J]. Appl Opt, 1985, 24(18): 3049-3052.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部