期刊文献+

Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts? 被引量:3

Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?
下载PDF
导出
摘要 In order to investigate whether adaptive observations can improve tropical cyclone (TC) intensity forecasts,observing system simulation experiments (OSSEs) were conducted for 20 TC cases originating in the western North Pacific during the 2010 season according to the conditional nonlinear optimal perturbation (CNOP) sensitivity,using the fifth version of the PSU/NCAR mesoscale model (MM5) and its 3DVAR assimilation system.A new intensity index was defined as the sum of the number of grid points within an allocated square centered at the corresponding forecast TC central position,that satisfy constraints associated with the Sea Level Pressure (SLP),near-surface horizontal wind speed,and accumulated convective precipitation.The higher the index value is,the more intense the TC is.The impacts of the CNOP sensitivity on the intensity forecast were then estimated.The OSSE results showed that for 15 of the 20 cases there were improvements,with reductions of forecast errors in the range of 0.12%-8.59%,which were much less than in track forecasts.The indication,therefore,is that the CNOP sensitivity has a generally positive effect on TC intensity forecasts,but only to a certain degree.We conclude that factors such as the use of a coupled model,or better initialization of the TC vortex,are more important for an accurate TC intensity forecast. In order to investigate whether adaptive observations can improve tropical cyclone (TC) intensity forecasts,observing system simulation experiments (OSSEs) were conducted for 20 TC cases originating in the western North Pacific during the 2010 season according to the conditional nonlinear optimal perturbation (CNOP) sensitivity,using the fifth version of the PSU/NCAR mesoscale model (MM5) and its 3DVAR assimilation system.A new intensity index was defined as the sum of the number of grid points within an allocated square centered at the corresponding forecast TC central position,that satisfy constraints associated with the Sea Level Pressure (SLP),near-surface horizontal wind speed,and accumulated convective precipitation.The higher the index value is,the more intense the TC is.The impacts of the CNOP sensitivity on the intensity forecast were then estimated.The OSSE results showed that for 15 of the 20 cases there were improvements,with reductions of forecast errors in the range of 0.12%-8.59%,which were much less than in track forecasts.The indication,therefore,is that the CNOP sensitivity has a generally positive effect on TC intensity forecasts,but only to a certain degree.We conclude that factors such as the use of a coupled model,or better initialization of the TC vortex,are more important for an accurate TC intensity forecast.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期252-262,共11页 大气科学进展(英文版)
基金 sponsored by the National Natural Science Foundation of China (Grant No. 41105040)
关键词 adaptive observation tropical cyclone intensity forecast conditional nonlinear optimal perturbation adaptive observation tropical cyclone intensity forecast conditional nonlinear optimal perturbation
  • 相关文献

二级参考文献39

共引文献50

同被引文献17

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部