期刊文献+

集成互补不变特征的SAR影像自动配准 被引量:3

Automatic SAR image registration of integrated complementary invariant features
下载PDF
导出
摘要 合成孔径雷达(synthetic aperture Radar,SAR)影像的精确配准是使用SAR影像准确分析矿区变形的前提。虽然目前已有的影像配准算法很多,但是直接应用于SAR影像配准的效果还不够理想。为此,提出了一种集成互补不变特征的配准方法。该方法首先利用Canny边缘检测算法对影像进行区域分割,利用获得的分割区域进行粗匹配,然后应用改进Canny边缘特征的SIFT算法进行精匹配,最终获得精确配准的SAR影像。该方法能够降低由单纯使用SIFT特征进行匹配所产生的巨大计算量。通过实验分析可知,该方法能够准确配准矿区SAR影像,为矿区变形分析和综合治理提供高质量的影像数据。 The accurate synthetic aperture Radar (SAR) image registration is the prerequisite for exact analysis of mine deformation. Many image registration algorithms have been proposed, but the results are not satisfactory when these registration algorithms are directly applied to SAR image. In view of such a situation, the authors put forward an integrated registration approach in this paper. The first step of this approach is the coarse matching with Canny edge for region division; then the fine matching is performed by SIFT algorithm with improved Canny edge features; finally, the accurate registration SAR image is obtained. This approach has fewer computations than that simply using SIFT feature matching. Experimental analyses with SAR images demonstrate the efficiency and accuracy of this approach for mine SAR image registration, which provides high -quality image data for comprehensive management in mining areas.
出处 《国土资源遥感》 CSCD 北大核心 2014年第1期52-56,共5页 Remote Sensing for Land & Resources
基金 欧空局CAT-1项目(编号:8371) 江苏省博士后科研资助计划项目(编号:1101109C)共同资助
关键词 合成孔径雷达(SAR)影像 自动配准 Canny边缘 SIFT算法 SAR image automatic registration Canny edge SIFT algorithm
  • 相关文献

参考文献7

二级参考文献70

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2牛力丕,毛士艺,陈炜,焦静.基于长边缘相关和一致性检测的多传感器图像配准方法[J].信号处理,2005,21(2):115-119. 被引量:3
  • 3于铂,郑丽敏,田立军.基于颜色和纹理特征提取彩色图像的有意义区域[J].计算机工程,2006,32(3):206-208. 被引量:12
  • 4L. Brown. A survey of image registration techniques [ J ]. ACM Computer Surveys, 24 (4) : 325 -376,1992.
  • 5B. Zitova, J. Flusser. Image registration methods: a survey [ J ]. Image Vision Computing,21 ( 11 ) :977-1000,2003.
  • 6A. Goshtasby. 2-D and 3-D image registration for medical, remote sensing, and industrial applications [ M ]. 1^st Edition, Dayton : Wiley-Interscience ,63-70.2005.
  • 7Barnea D I, Silverman H F. A class of algorithms for fast digital registration [ J ]. IEEE Trans. Computer, (21 ) : 179-186,1972.
  • 8J. Flusser and T. Suk. A moment-based approach to registration of images with affine geometric distortion [ J]. IEEE Trans. on Geoscience and Remote Sensing, 1994,32 ( 2 ) : 382-387.
  • 9X. Dai and S. Horram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments [J]. IEEE Trans. On Geoscience and Remote Sensing, 1999,37 (5) :2351-2362.
  • 10J. Flusser. Object matching by means of matching likelihood coefficients [ J ]. Pattern Recognition Letters, 16 (9) : 893-900,1995.

共引文献54

同被引文献31

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部