期刊文献+

改进证据理论融合灰色神经网络的水质预测

Water Quality Prediction Based on Improved Evidence Theory Combining with Gray Neural Network
下载PDF
导出
摘要 针对水质预测过程中样本数据少的特点,引入了改进证据理论和灰色神经网络相结合的组合预测方法。首先利用灰色神经网络作为单一模型对水质进行初步预测,再用神经网络对预测结果进行分析建模,得到每个单一预测模型的可信度,最后采用改进证据理论进行融合决策,以获得各单一预测模型的权重,从而实现了水质的组合预测。实例分析结果表明,该方法拟合误差小、预测精度高。 Aiming to the characteristics of few sample data in water quality prediction process,this paper introduced a combination prediction meth-od based on improved evidence theory combining with gray neural network. Firstly,the gray neural network was used as single model to preliminary predict the water quality;then the neural network was used to analyze the predictive results and establish models to get the credibility of every single prediction model;finally,the evidence theory was employed to fuse them and to obtain the single prediction mode1 weight. Hence,the water quali-ty prediction was realized. The results show that the method has small fitting error and high prediction precision.
机构地区 红河学院工学院
出处 《人民黄河》 CAS 北大核心 2014年第3期46-48,共3页 Yellow River
基金 云南省教育厅科学研究基金资助项目(2013Y065)
关键词 改进证据理论 灰色神经网络 水质 预测 improved evidence theory gray neural network water quality prediction
  • 相关文献

参考文献10

二级参考文献98

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部