期刊文献+

基于内存数据库Redis的轻量级矢量地理数据组织 被引量:26

Research of Lightweight Vector Geographic Data Management Based on Main Memory Database Redis
原文传递
导出
摘要 矢量地理数据的高效组织管理是空间数据应用的关键问题之一。矢量地理数据服务作为一种重要的公众空间信息服务,已经得到广泛应用。公众对矢量地理数据服务性能提出了越来越高的要求,包括实时响应、高并发、高吞吐量等。当前的矢量地理数据服务后台数据存储组织,通常基于磁盘和关系数据库,其在面对公众日益增长的需求时已经显得力不从心。本文提出了一种以内存数据库Redis的轻量级矢量地理组织方法,能在高并发情况下有效提高矢量地理数据服务性能。论文首先分析了Redis的存储机制,设计了矢量地理数据库的分层组织模型,利用Redis丰富的数据结构对矢量地理数据及其相关元数据进行存储管理,然后,以网格索引为例,设计了Redis的空间索引,最后,设计Redis的矢量数据引擎原型系统,并进行了实验验证。结果表明,Redis的矢量地理数据库显著提高了响应速度,且并发性能更好,可广泛应用于大型空间数据库前端高速缓存和高性能空间索引库。 Effective organization and management of vector geographic data is one of the key parts for spatial da-tabase application. The traditional vector geographic data service is usually based on magnetic disks and relation-al databases like Oracle Spatial. With the rapid development of wireless communication and mobile web technol-ogy, the performance of current vector geographic data service is declining dramatically under multi-user concur-rent access, and can't meet the requirements of high performance and high concurrency. In order to improve the performance of vector geographic data service under multi-user concurrent access, we proposed a novel manage-ment approach of lightweight vector geographic data based on main memory database Redis. Redis is a main-memory lightweight key/value store. Its I/O performance is much better than traditional disk-based databas-es like Oracle and MS SQL server. At first, we analyzed Redis' key-value data model and data structure. Subse-quently we designed a four level hierarchy organization structure of vector geographic database. We stored vec-tor geographic data and its metadata based on Redis’plentiful data structures. Then, taking the grid spatial index as an example, we designed the storage method of spatial index and spatial query processing flow for Redis based on the hierarchy organization structure of vector geographic database. Our experimental results confirmed that compared to traditional relational spatial database-Oracle Spatial, our main memory style vector geographic data management approach greatly improves spatial query responding speed and its concurrent performance is excellent. The proposed approach can be used as a front end high performance cache of large spatial database or a high performance spatial indexes database.
出处 《地球信息科学学报》 CSCD 北大核心 2014年第2期165-172,共8页 Journal of Geo-information Science
基金 国家自然科学基金项目(40801149) 江苏省高校优势学科建设资助项目"面向查询的NoSQL空间数据库研究"(164320H101)
关键词 内存数据库 键值数据库 矢量地理数据 空间索引 Redis Redis main memory database key value database vector geographic data spatial index
  • 相关文献

参考文献18

  • 1覃雄派,王会举,李芙蓉,李翠平,陈红,周烜,杜小勇,王珊.数据管理技术的新格局[J].软件学报,2013,24(2):175-197. 被引量:110
  • 2孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2393
  • 3王珊,肖艳芹,刘大为,覃雄派.内存数据库关键技术研究[J].计算机应用,2007,27(10):2353-2357. 被引量:52
  • 4Ousterhout J,Agrawal P,Erickson D,et al.The case for ramclouds:scalable high-performance storage entirely in dram[J].SIGOPS Operating Systems Review,2010,43(4):92-105.
  • 5The Trinity graph engine[EB/OL].[2013-07-20].http://research.microsoft.com/pubs/161291/trinity.pdf.
  • 6Redis:Lightweight key/value store that goes the extra mile[EB/OL].[2013-07-28].http://www.linux-mag.com/id/7496/.
  • 7支撑5亿用户、1.5亿活跃用户的Twitter最新架构详解及相关实现[EB/OL].[2013-07-18].http://www.csdn.net/article/2013-07-11/2816199-architecture-twitter-uses-to-deal-with-150m-active-users.
  • 8唐诚.Redis数据库在微博系统中的实践[J].厦门城市职业学院学报,2012,14(3):55-59. 被引量:8
  • 9Hu L,Yue P,Zhou H X.Geoprocessing in Google Cloud Computing:Case studies[C].2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics),Aug,2012.
  • 10Kerr N T.Alternative approaches to parallel GIS processing[D].Arizona State University,2009.

二级参考文献297

  • 1郭志伟,武家春,廖建新,刘岩.应用于VoiceXML系统的缓冲机制的研究[J].信息网络,2005(11):61-63. 被引量:2
  • 2张岩,陈智峰,周源源.Efficient Execution of Multiple Queries on Deep Memory Hierarchy[J].Journal of Computer Science & Technology,2007,22(2):273-279. 被引量:1
  • 3王文林,廖建新,朱晓民.基于VoiceXML的语音平台缓存一致性控制算法[J].电子学报,2007,35(4):640-646. 被引量:2
  • 4Shekhar S,Chawla S.谢昆青,等.空间数据库[M].北京:机械工业出版社,2004,1~300.
  • 5倪明选,罗吴蔓.数据爆炸时代的技术变革[J].中国计算机学会通讯,数据密集型计算专题,2011,7(7):12-20.
  • 6Hadoop. http://hadoop. apache. org/[EB/OL]. 2011 -10-31.
  • 7GHEMAWAT S,GOBIOFF H,LEUNG S T. The Google file system[A]. Proceeding of 19th ACM Symposium on Operating Systems Principles[C]. 2003. 20-43.
  • 8DEAN JtGHEMjAJAAT S. MapReduce: Amplified data processing on large clusters [A]. OSDI'OL 6th Symposium on Operating Systems Design and Implementation[C]. 2004. 137-150.
  • 9CHANG F,DEAN J,GHEMAWA S,et al. Bigtable: A distributed storage system for structured data[A]. OSD^06 : Proceedings of the 7 th USENIX Symposium on Operating Systems Design and Implementation[C]. 2006. 205-218.
  • 10OGC http://www. opengis. orgltechno[EB/OL]. 2009-12-31.

共引文献2583

同被引文献205

引证文献26

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部