期刊文献+

基于自适应免疫选择模型的齿轮故障诊断 被引量:2

Diagnose Gear Faults Based on Adaptive Immune Selection Model
原文传递
导出
摘要 针对齿轮振动信号特征难以提取的现状,依据免疫系统的自适应,自学习特性,提出了自适应免疫选择模型,该模型中引入了自适应变异和3种抑制方式初始化抗体抑制、克隆抑制、检测器优化抑制,并利用该模型生成成熟故障检测器。将生成的检测器应用于齿轮故障诊断试验中,试验结果表明该模型能有效地对3类典型齿轮故障进行分类与辨识。 It is difficult to extract the features from gear vibration signal, based on immune system adaptive, self-learning characteristics, the adaptive immune selection algorithm was proposed. The adaptive mutation and three inhibition of initializing antibody inhibition, clone inhibition, inhibition of formation of mature detector optimization were introduced in the model. The excellence detector to diagnose fault was produced. The model was tested in the gear fault diagnosis and the trial results indicate that the detector can effectively classify and identify three typical kinds of gear faults.
出处 《煤矿机械》 北大核心 2014年第2期232-234,共3页 Coal Mine Machinery
关键词 齿轮故障诊断 免疫选择 自适应变异 免疫疫苗 Key words: gear fault diagnosis immune selection adaptive variation immune vaccine
  • 相关文献

参考文献5

二级参考文献45

共引文献44

同被引文献35

  • 1Wang Xiaolan, Li Hui. One-month ahead prediction of wind speed and output power based on EMD and LSSVM [ C ]//International Conference on Energy and Environment Tech- nology. Guilin, China : IEEE, 2009:431 - 442.
  • 2Yang Xiyun, Cui Yuqi, Zhang Hongsheng, et al. Research on modeling of wind turbine based on LS· SVM [ C]// In- ternational Conference on Sustainable Power Generation and Supply. Nanjing, China,2009 : 1 - 6.
  • 3Geem ZW, Kiln JH, Loganathan GV. A new heuristic opti- mization algorithm : harmony search [ J ]. Simulation, 2001, 76(2) :60 -68.
  • 4MAHDAVI M, FESANGHARY M, DAMANGIR E. An im- proved harmony search algorithm for solving optimization problems [ J ]. Applied Mathematics and computation, 2007, 188(2) :1567 - 1579.
  • 5ALIA O, MANDAVA R. The variants of the harmony search algorithm : an overview [ J ]. Artificial Intelligence Review,2011,36( 1 ) :49 - 68.
  • 6Sivasubramani S, Swarup K S. Multi-objective harmony search algorithm for optimal power flow problem[ J ]. Interna- tional Journal of Electrical Power and Energy Systems, 2011, 33 (3) :745 - 752.
  • 7GEEM Z W. Novel derivative of harmony search algorithm for discrete design variables [ J ]. Applied Mathematics and Computation, 2008,199 ( 1 ) : 223 - 230.
  • 8Nahas, Nabil, Thien-My, et al. Harmony search algo- rithm: Application to the redundancy optimization problem [ J ]. Engineering Optimization ,2010,42 (9) : 845 - 861.
  • 9Geem Z W. State-of-the-art in the structure of harmony Search algorithm[ J ]. Studies in Computational Intelligence, 2010,270(5) :1 - 10.
  • 10Smith S J. The local mean decomposition and its application to EEG perception data[ J ]. Journal of the Royal Society In- terface, 2005,2 (5) :443 - 454.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部