期刊文献+

超声速细长锥型射弹超空泡流动数值计算方法 被引量:8

Numerical method of supercavitating flow past a slender cone type projectile traveling at supersonic speed
原文传递
导出
摘要 基于超声速细长体运动理论,采用理想可压缩流体无旋定常流动以及超空泡尾部Riabushinsky闭合方式假定,建立了描述水下超声速条件下细长锥型射弹超空泡流动的非线性积分-微分方程.针对超声速流动特点,发展了该方程数值离散和迭代求解的新方法,采用一阶近似解作为超空泡流动数值计算的初始解,优化了初始迭代条件,提高了计算速度和精度.通过与超空泡细长比渐近解结果进行比较,验证了理论模型和计算方法的正确性及有效性.在超声速条件下,分析了流体压缩性效应以及不同马赫数对细长锥型射弹超空泡形态、表面压力系数和压差阻力系数的影响,为超空泡射弹的弹型优化和水中弹道预报提供了理论基础. On the assumption that the ideal compressible fluid motion is irrotational and steady,super-cavitating closure with the Riabushinsky scheme,and based on the slender body theory at supersonic speed,a nonlinear integro-differential equation for the supercavitating flow around a slender cone type projectile traveling in water at supersonic speed was derived.According to the features of supersonic flow,the new numerical discrete and iteration methods solving the equation were developed.By tak-ing the first order approximation solution as initial value of numerical calculation to supercavitating flow,the iteration condition was optimized,and the calculated speed and precision were improved.By comparing the computed results with the asymptotic solutions provided by the foreign literature about the slenderness ratio of supercavitation,the correctness and validity of the theoretical model and cal-culation method were verified.At supersonic speed,the compressibility effects of fluid were taken in-to account,and the supercavitation profile,surface pressure coefficient and pressure drag coefficient of the slender cone type projectile at different Mach numbers were analyzed.The research provided the theoretical basis for the shape optimization and underwater ballistic forecast of supercavitating proj ec-tile.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期39-43,109,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51309230 10772196)
关键词 流体力学 超声速 超空泡流动 压缩性 细长锥型射弹 fluid mechanics supersonic speed supercavitating flow compressibility slender cone type proj ectile
  • 相关文献

参考文献9

  • 1Kirschner I N. Results of selected experiments invol- ving supercavitating flows[C]//The Research and Technology Organisation of NATO Supercavitating Flows(RTO EN-010/AVT-058). Ottawa: St Joseph Corporation Company, 2002: 1501-1514.
  • 2Serebryakov V V, Kirschner I N, Schnerr G H. High speed motion in water with supercavitation for sub-, trans-, supersonic Mach numbers[C]// Seventh International Symposium on Cavitation (CAV2009). New York: Curran Associates Inc, 2011: 219-236.
  • 3金永刚,张志宏,王冲,孟庆昌,顾建农.水下亚声速细长锥型射弹超空泡流的数值计算方法[J].计算力学学报,2012,29(3):393-398. 被引量:2
  • 4Vasin A D. Supercavitating flows at supersonic speed in compressible water[C] // High Speed Body Motion in Water ( AGARD-R827 ). Hull: Communication Group Inc, 1998: 2101-2110.
  • 5孟庆昌,张志宏,刘巨斌,顾建农.超声速圆盘空化器超空泡流动数值计算方法[J].上海交通大学学报,2011,45(10):1435-1439. 被引量:2
  • 6Vasin A D. Supercavities in compressible fluid[C]// The Research and Technology Organisation of NATO Supercavitating Flows ( RTO EN-010/AVT-058 ). Ottawa: St Joseph Corporation Company, 2002:1601-1629.
  • 7张志宏,孟庆昌,顾建农,金永刚.水下超声速细长锥型射弹超空泡形态的计算方法[J].爆炸与冲击,2011,31(1):49-54. 被引量:4
  • 8Serebryakov V V. Some problems of the supercavita- tion theory for sub or supersonic motion in water [C]//High Speed Body Motion in Water (AGARDR- 827). Hull: Communication Group Inc, 1998: 2301- 2320.
  • 9张志宏,孟庆昌,顾建农,王冲.水下亚声速细长锥型射弹超空泡形态的计算方法[J].爆炸与冲击,2010,30(3):254-261. 被引量:11

二级参考文献46

  • 1张志宏,顾建农,范武杰,李甲连.旋转弹体高速入水水中弹道的模拟方法[J].海军工程大学学报,2000,12(6):1-5. 被引量:6
  • 2顾建农,张志宏,范武杰.旋转弹丸入水侵彻规律[J].爆炸与冲击,2005,25(4):341-349. 被引量:39
  • 3Kunz R F,Lindau J W,Billet M L,et al.Multiphase CFD modeling of developed and supercavitating flows[Z].VKI/RTO Lecture Series on "Supercavitating Flows",Von Karman Institute for Fluid Dynamics.Brussels,Belgium,2001.
  • 4Vasin A.The principle of independence of the cavity sections expansion as the basis for investigation on cavitation flows[Z].VKI/RTO Lecture Series on "Supercavitating Flows",Von Karman Institute for Fluid Dynamics.Brussels,Belgium,2001.
  • 5Serebryakov V V.Problems of hydrodynamics for high speed motion in water with supercavitation[C] ∥Sixth International Symposium on Cavitation(CAV2006).Wageningen,Netherlands,2006.
  • 6Kulkarni S S,Pratap R.Studies on the dynamics of a supercavitating projectile[J].Journal of Applied Mathematical Modeling,2000,24(2):113-129.
  • 7Kirschner I N.Results of selected experiments Involving supercavitating flows[Z].VKI/RTO Lecture Series on "Supercavitating Flows",Von Karman Institute for Fluid Dynamics.Brussels,Belgium,2001.
  • 8Vlasenko Y D.Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds[C] ∥Fifth International Symposium on Cavitation(CAV2003).Osaka,Japan,2003.
  • 9Ohtani K,Kikuchi T,Numata D,et al.Study on supercavitation phenomena induced by a high-speed slender projectile on water[C] ∥23rd International Association for Hydraulic Research Symposium(IAHR).Yokohama,Japan,2006.
  • 10Garabedian P R.Calculation of axially symmetric cavities and jets[J].Pacific Journal of Mathematics,1956,6(4):611-684.

共引文献12

同被引文献39

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部