期刊文献+

一种依赖3D眼球模型的两级瞳孔定位算法 被引量:2

A two-level pupil location method relying on 3D eyeball model
下载PDF
导出
摘要 瞳孔定位作为头戴式视线跟踪系统的核心模块之一,影响着系统的精度和稳定性,但眼球在正常转动中会发生着眼睑遮挡瞳孔问题.针对该问题,提出了一种两级瞳孔定位算法.第一级采用改进的星射线法提取瞳孔边缘轮廓.接着根据3D眼球模型和瞳孔位置提前判断是否存在眼睑遮挡情况,如果不存在,则定位结束,否则进行第二级定位.第二级采用改进的椭圆模板匹配算法,不同于其他椭圆匹配算法,该算法利用3D眼球模型的参数提前获取椭圆的长短轴比例和旋转角度,将匹配的空间复杂度由5维降为3维,提高了匹配的效率.在眼睑遮挡情况下该算法精确检测出瞳孔,并且定位速度较快. As a key part of the head-mounted eye tracking system, pupil detection not only affects system accuracy, but also system stability. However, the problem of eyelid occlusions arises when eyeball moves. To solve this problem, a Two-Level pupil detection method was proposed. The first level utilizes the improved starburst method to extract pupil edge points and then check whether the pupil is shaded by eyelid. If it's not the case, pupil detection ends, otherwise the second level detection is conducted. In the second level detection, improved ellipse template matching method is applied. Unlike other ellipse matching methods, this method is based on a 3D eyeball model. With eyeball parameters, this method estimates ellipse minor-major axis rate and angle of rotation in advance, and then decreases the spatial complexity from five dimensions to three, thus improving matching efficiency. With our method, the pupil can be easily rapidly detected under eyelid occlusions.
作者 夏小宝 李斌
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第2期153-159,共7页 JUSTC
基金 国家自然科学基金委-广东省联合基金重点项目(U0835002)资助
关键词 椭圆模板匹配 3D眼球模型 瞳孔边缘 眼睑遮挡检测 椭圆拟合 match of ellipse template 3D eyeball model pupil edge eyelid occlusions detection ellipse fit
  • 相关文献

参考文献12

  • 1Perez C A,Aravena C M,Vallejos J I,et al.Face and iris localization using templates designed by particle swarm optimization[J].Pattern Recognition Letters,2010,31(9):857-868.
  • 2Daugman J.How iris recognition works[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):21-30.
  • 3耿新,周志华,陈世福.基于混合投影函数的眼睛定位[J].软件学报,2003,14(8):1394-1400. 被引量:78
  • 4张勇忠,刘富,孙令明,唐超.基于对称变换的瞳孔定位方法[J].吉林大学学报(信息科学版),2009,27(3):268-272. 被引量:7
  • 5Li D H,Winfield D,Parkhurst D J.Starburst:A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches[C]//IEEE Computer society Conference on Computer Vision and Pattern Recognition.San Diego,USA:IEEE Press,2005:79.
  • 6RyanW J,Woodard D L,Duchowski A T,et al.Adapting starburst for elliptical iris segmentation[C]//International Conference on Biometrics:Theory,Applications and Systems.Washington,USA:IEEE Press,2008:54-60.
  • 7王军宁,刘涛,何迪,武媛媛.红外头盔式眼动仪的瞳孔中心定位算法[J].西安电子科技大学学报,2011,38(3):7-12. 被引量:6
  • 8Liu X M,Bowyer K W,Flyrn P J.Experiments with an improved iris segmentation algorithmn[C]//Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced Technologies.IEEE Press,2005:118-123.
  • 9郝明刚,董秀成,黄亚勤.一种精确的人眼瞳孔定位算法[J].计算机工程,2012,38(8):141-143. 被引量:7
  • 10Takegami T,Gotoh T,Ohyama G.An algorithm for Model-based stable pupil detection for eye tracking system[J].Systems and Computers in Japan,2004,35(13):21-31.

二级参考文献66

共引文献101

同被引文献22

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部