期刊文献+

多层自适应交叉近似加速的旋转对称体矩量法

An acceleration method for the moments of method for bodies of revolution based on the muti-level adaptive cross approximation
下载PDF
导出
摘要 为了更有效地分析旋转对称电大物体的电磁散射问题,提出了一种针对旋转对称矩量法的多层自适应交叉近似加速方法,并分别应用于基于三角形基函数和3阶Hermite基函数的旋转对称矩量法.使用所提方法加速混合场积分方程下旋转对称体矩量法的单模式与多模式阻抗矩阵的构建过程时,计算得到的远场雷达散射截面积与传统旋转对称矩量法的结果吻合良好,且计算效率明显提高. In order to analyze the scattering problem of electrically large bodies of revolution more efficiently,an acceleration method for the method of moments for bodies of revolution(BOR-MOM)using multi-level adaptive cross approximation(MLACA)is present in this paper and applied on the BOR-MOM based on the triangle and 3-order Hermits basis functions respectively.The MLACA is used to accelerate the filling process of the mono-and multi-mode impendence matrices of the BOR-MOM of combined field integral equation.The computed far-field RCS matches the numerical result of the traditional BOR-MOM well and the computing efficiency is improved considerably.
出处 《电波科学学报》 EI CSCD 北大核心 2014年第1期55-60,71,共7页 Chinese Journal of Radio Science
基金 总装预研资助项目 总装预研基金资助项目
关键词 旋转对称矩量法 多层自适应交叉近似 三角形基函数 3阶Hermite基函数 混合场积分方程 BOR-MOM MLACA triangle basis function 3-order Hermits basis function combined field integral equation
  • 相关文献

参考文献19

  • 1胡俊,聂在平,王军,邹光先,胡颉.三维电大目标散射求解的多层快速多极子方法[J].电波科学学报,2004,19(5):509-514. 被引量:75
  • 2弓晓东,胡俊,聂在平,王浩刚,王军,孟敏.三维导电目标电磁散射的高阶多层快速多极子方法[J].电波科学学报,2004,19(5):577-580. 被引量:9
  • 3郭景丽,李建瀛,刘其中.任意形状天线罩的快速分析[J].电波科学学报,2006,21(2):189-193. 被引量:8
  • 4BLESZYNSKI E, BLESZYNSKI M, JAROSZEWICZ T. AIM: Adaptive integral method for solving large- scale electromagnetic scattering and radia-tion prob- lems[J]. RadioSci, 1996, 31(5): 1225-1251.
  • 5WANG C F, LING F, JIN J M. Adaptive integral so- lution of combined field integral equation[J]. Microw Opt Tech Lett, 1998, 19(5): 321-328.
  • 6PHILLIPS J R, WHITE J K. A precorrected-FFT method for electrostatic analysis of complicated 3-D structures[J]. IEEE Trans Comput Aided Des Integr Circuits Syst, 1997, 16(10).. 1059-1072.
  • 7ZHAO K, VOUVAKIS M N, LEE J F. Application of the multilevel adaptive cross-approximation on ground plane designs[C]// IEEE Int Symp Electro- magnetic Compatibility. Santa Clara, 2004: 124-127.
  • 8ZHAO K, VOUVAKIS M N, LEE J F. The multi- level adaptive cross-approximation algorithm for mod- eling electromagnetic radiation and scattering proh- lems[C]// PIERs. Nanjing, 2004.
  • 9BEBENDORF M. Approximation of boundary element matrices[J]. Numer Math, 2000, 86(4): 565-589.
  • 10KURZ S, RAIN O, RJASANOW S. The adaptive cross-approximation technique for the 3-D boundary element method[J]. IEEE Trans Magn, 2002, 38 (2) : 421424.

二级参考文献29

  • 1胡俊,聂在平,王军,邹光先,胡颉.三维电大目标散射求解的多层快速多极子方法[J].电波科学学报,2004,19(5):509-514. 被引量:75
  • 2胡俊 聂在平 姚海英.多层快速多极子方法中的树型算法[J].电波科学学报(增刊),1999,14:155-158.
  • 3W C Chew, J M Jin, Eric Michielssen, J M Song. Fast and efficient algorithms in computational electromagnetics[M]. Norwood: Artech House Publishers, 2001.
  • 4S V Velamparambil, W C Chew and J M Song. 10 Million unknowns: is it that big?[J]. IEEE Antennas and Propagation Magazine, 2003, 45(2):43~58.
  • 5S V Velamparambil, W C Chew. A fast polynomial representation for the translation operators of an MLFMA[J]. Microwave and Optical Technology Letters, 2001,28(5):298~303.
  • 6B K Alpert and V Rokhlin. A fast algorithm for the evaluation of Legendre expansions[J]. SIAM J. Sci. Statist. Comput., 1991,12(1),158~179.
  • 7HU Jun, Nie Zaiping,Zou Guanxian. An efficient Modified interpolation technigue for the traslation operators in MLFMA[M].426-432, Editor: ra-Qiu Jin."Wave propagation scattering and Emission in Copmlex Media" Science press 2004, Bejing.
  • 8J M Song, C C Lu, W C Chew, and S W Lee. Fast illinois solver code (FISC)[J]. IEEE Antennas and Propagation Magazine, 1998, 40(3):27~34
  • 9S V Velamparambil, W C Chew and J M Song. 10 Million unknowns: is it that big?[J]. IEEE Antennas and Propagation Magazine, 2003, 45(2):43~58.
  • 10胡俊 聂在平 姚海英.等多层快速多极子方法中的树型算法[J].电波科学学报(增刊),1999,14:155-158.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部