期刊文献+

基于压缩感知的空间谱估计 被引量:11

The spatial spectrum estimation based on compressive sensing
下载PDF
导出
摘要 以多重信号分类(Multrple Signal Classification,MUSIC)算法为代表的现代空间谱估计方法,估计的信源数受限于阵列形式,并且需要的采样数据量巨大.文章从压缩感知的基础理论出发,利用目标信号空间分布的稀疏性,建立了基于压缩感知的阵列信号空间谱估计模型.利用压缩感知方法,可以使用较少的阵元数对空间信号进行采样测量,并准确重构信号.相比传统的MUSIC空间谱估计算法,该方法所需阵元数少,采样数据量小,并且能同时进行信号强度和角度的估计.所提方法对推动压缩感知理论在阵列信号空间谱估计中的应用具有一定意义. Abstract The traditional major spatial spectrum estimation method is based on the mul- tiple signal classification (MUSIC) algorithm, which estimated signal source number is limited to the array element number and need large sampling data size. According to the compressive sensing basis theory and using the sparse distribution of the spatial signal source bearing, this paper constructs the spatial spectrum estimation model of the array signal processing based on compressive sensing theory. Utilizing compressive sensing method, the spatial signal can be sampled by little array elements, so with small sam- pling data, the signal amplitude and bearing can be estimated simultaneously. The method presented in this paper promots the application of compressive sensing in the array signal spatial spectrum estimation.
出处 《电波科学学报》 EI CSCD 北大核心 2014年第1期150-157,共8页 Chinese Journal of Radio Science
关键词 空间谱估计 压缩感知 稀疏信号 正交匹配追踪算法 spatial spectrum estimation compressive sensing sparse signal orthogonal matching pursuit algorithm
  • 相关文献

参考文献14

二级参考文献204

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2胡岸勇,苗俊刚.二维综合孔径辐射计中的稀疏天线布局[J].遥感技术与应用,2007,22(2):158-161. 被引量:3
  • 3何云涛,江月松,陈海亭.二维圆周综合孔径阵列优化及其毫米波成像特性研究[J].遥感学报,2007,11(1):33-38. 被引量:8
  • 4Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 5Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 6Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 7Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 8Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 9Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 10Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.

共引文献448

同被引文献107

  • 1赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364. 被引量:126
  • 2吴国清,王美刚.无源声呐稀疏阵无栅瓣性能分析[J].声学学报,2006,31(6):506-510. 被引量:7
  • 3沈显祥,叶瑞青,唐斌,杨建宇.基于欠采样的宽带线性调频信号参数估计[J].电波科学学报,2007,22(1):43-46. 被引量:17
  • 4冯大政,郑春弟,周祎.一种利用信号特点的实值MUSIC算法[J].电波科学学报,2007,22(2):331-335. 被引量:8
  • 5James H G. High-frequency direction finding in space [ J ]. Review of Scientific Instruments, 2003,74 ( 7 ) : 3478-3486.
  • 6Romberg J. Imaging via compressive sampling[ J]. IEEE Signal Processing Magazine, 2008,25 ( 2 ) : 14- 20.
  • 7Malioutov D, Getin M, Willsky S A. A sparse signal re- construction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Processing, 2005,53(8) : 3010-3022.
  • 8Yu Y, Petropulu A P, Poor H V. MIMO radar using compressive sampling [ J]. IEEE Journal of Selected Topics in Signal Processing,2010,4( 1 ) : 146-162.
  • 9Siwei Yu,A. Shaharyar Khwaja,Jianwei Ma.Compressed sensing of complex-valued data[J]. Signal Processing . 2011 (2)
  • 10Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)

引证文献11

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部