期刊文献+

基于ROI灰度压缩的电路板红外图像配准 被引量:9

Infrared image registration of circuit board based on ROI gray compression
下载PDF
导出
摘要 电路板红外图像配准技术是电路板红外热成像故障检测系统的核心。针对传统图像配准算法精度和效率较低等不足,为了提高电路板红外图像配准精度和效率,设计了一种基于ROI灰度压缩的图像配准算法。首先,利用Otsu法提取出电路板红外图像ROI。然后,将ROI内灰度值进行线性压缩。最后将灰度压缩后的图像进行互信息量运算和图像x平移、y平移、旋转、缩放变换参数寻优。仿真结果表明,基于ROI的灰度压缩算法能够显著减小配准时间,当两幅图像环境温度差异较大时其配准精度相比其他灰度压缩算法有明显优势。 Infrared image registration technique is the core of circuit board fault detection system. In order to improve the accuracy and efficiency of circuit board infrared image registration, an image registration algorithm based on ROI gray compression is proposed. First, Otsu method is used to extract circuit board infrared image ROI. Then, the ROI gray value is made linear compression. Finally the best image transform parameters are searched like x translation,y translation, rotation, scaling by mutual information calculation. The simulation results show that the image compression algorithm base on ROI can significantly reduce the registration time. The environment temperature difference of two images is larger, the registration accuracy is better.
出处 《激光与红外》 CAS CSCD 北大核心 2014年第3期313-318,共6页 Laser & Infrared
基金 中央高校基本科研业务项目(No.ZXB2011A003) 中国民航大学科技基金项目(No.2010kyE07) 中国民航大学校级科研(No.2011kyE01) 中国民航机务维修科研基地资助
关键词 图像配准 灰度压缩 感兴趣区域 OTSU法 image registration gray-scale compressed ROI Otsu
  • 相关文献

参考文献5

二级参考文献33

  • 1朱宁,吴静,王忠谦.图像放大的偏微分方程方法[J].计算机辅助设计与图形学学报,2005,17(9):1941-1945. 被引量:49
  • 2王晓军,孙洪,董鹏曙.基于K-S检测的SAR图像灰度压缩性能评估[J].现代雷达,2006,28(7):45-48. 被引量:2
  • 3许微,侯正信.基于扩散率函数的图像放大算法[J].传感技术学报,2006,19(4):1257-1260. 被引量:5
  • 4姜晓彤,罗立民,赵正旭.一种改进的基于互信息和梯度特征的图像配准方法的研究[J].仪器仪表学报,2006,27(9):1141-1146. 被引量:20
  • 5J P W Pluim,J B A Maintz,M A Viergever.Image registration by maximization of combined mutualinformation and gradient information[J].IEEE Trans.Med.Imag,2000,19(8):809-814.
  • 6Jae Hak Lee,Yong Sun Kim,Duhgoon Lee,et al.Jong Beom Ra Robust CCD and IR image registration using gradient-based statistical information[J].IEEE Signal Processing Letters,2010,17(4):347-350.
  • 7Studholme C,Hill D Lg,Hawkes D J.An overlap invariant entropy measure of 3D medical image aligment[J].Pattern Recognition,1999,32(1):71-86.
  • 8L Rudin,S Osher,E Fatemi.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268.
  • 9Lin Jiarui,Gao Zhiyong,Xu Bangquan,et al.The Effect of Grey Levels on Mutual Information Based Medical Image Registra -tion[C]//Proc.of the 26th Annual International Conference.[S.l.]:IEEE Press,2004.
  • 10Gao Zhiyong,Lin Jiarui,Xu Bangquan,et al.The Affection of Grey Levels on Mutual Information Based Medical Image Regi stration[C]//Proc.of IEEE Symposium on Nuclear Science.[S.l.]:IEEE Press,2002.

共引文献60

同被引文献62

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部