期刊文献+

连续冷却过程中X70管线钢的铁素体相变动力学 被引量:5

Ferrite transformation kinetics of X70 pipeline steel during continuous cooling
原文传递
导出
摘要 在DIL805膨胀仪上测量了X70管线钢在连续冷却过程中的热膨胀曲线。根据试验结果,分析比较了两种奥氏体-铁素体相变开始温度模型,并通过对JMAK方程采用逆向回归法确定了铁素体相变分数的关键性参数,从而确定了连续冷却过程中的相变动力学。结果表明,不同冷却速率下的最佳n值和k值可通过JKMA公式逆向回归得出,模型分别采用时间指数n为0.5、1、1.5、1-0.5X2的4种取值方法计算铁素体相变动力学曲线,通过与试验数据的对比发现,用相变体积分数X的函数表征n值的方法计算精度更高,与试验结果吻合更好。模型Ⅰ由于对铁素体体积形核功ΔGV的取值有局限性,使得模型在大冷却速率下的预测结果会出现一定偏差,而模型Ⅱ仅涉及两个参数,适用性强,对于X70管线钢铁素体相变开始温度与冷却速率变化趋势为:Ts=Ae3-39.1440φ0.4020。 Thermal expansion curves of X 70 pipeline steel during continuous cooling process were tested on DIL 805 dilatometer .Based on experimental results , the start temperature of austenite to ferrite transformation among two models were analyzed , and the key parameters of ferrite transformation were obtained by reverse regression method with the JMAK equation , thus the kinetics during continuous cooling process were determined.The results show that, the optimal n and k can be obtained by the method mentioned above .In models, n is set as 0.5, 1, 1.5, 1-0.5X2 respectively to calculate the transformation kinetics , where X represents transformation volume fraction .In terms of n value characterized by 1-0.5X2 , it is higher precision and in better agreement with the experimental data than n value set as 0.5, 1, 1.5.In modelⅠ, the predicted results are deviated under high cooling rate , which results from the limitation of ferrite nucleation energy ΔGV . However , while modelⅡjust including two parameters is more availability .To X70 pipeline steel , the relationship between start temperature of ferrite transformation and cooling rate is indicated as Ts=Ae3 -39.1440φ0.4020 .
出处 《金属热处理》 CAS CSCD 北大核心 2014年第3期83-88,共6页 Heat Treatment of Metals
关键词 X70管线钢 铁素体相变 连续冷却 动力学 模型 X70 pipeline steel ferrite transformation continuous cooling kinetics model
  • 相关文献

参考文献8

二级参考文献74

  • 1许云波,于永梅,刘相华,王国栋.热变形过程中γ→α相变开始温度的预测——C-Mn钢与Nb-v微合金钢[J].东北大学学报(自然科学版),2005,26(1):59-62. 被引量:5
  • 2刘振宇,王国栋,张强,马龙翔.热变形对合金钢A_(e3)影响的热力学计算[J].金属学报,1994,30(6). 被引量:1
  • 3ZHAO Hong-zhuang LIU Xiang-hua WANG Guo-dong.Progress in Modeling of Phase Transformation Kinetics[J].Journal of Iron and Steel Research International,2006,13(3):68-73. 被引量:5
  • 4KIRKALDY J S, SHARMA R C. A new phenomenology for steel IT and CCT curves[J]. Scripta Metallurgica, 1982, 16(10): 1 193-1 198.
  • 5HAWBOLT E B, CHAU B, BRIMACOMBE J K. Kinetics of austenite-pearlite transformation in eutectoid carbon steel[J]. Metallurgical Transactions A, 1983, 14A(9)- 1 803-1 815.
  • 6SENUMA T, SUEHIRO M, YADA H. Mathematical modles for predicting microstructural evolution and mechanical properties of hot strips[J]. ISIJ International, 1992, 32(3): 423-432.
  • 7SUEHIRO M, SENUMA T, YADA H, et al. Application of mathematical model for predicting microstructural evolution to high carbon steels[J]. ISIJ International, 1992, 32(3): 433-439.
  • 8SERAJZADEH S, MIRBAGHERI S M H. A model for determination of austenite decomposition kinetics during continuous cooling on the run-out table[J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14: 217-228.
  • 9SAITO Y, SHIGA C. Computer simulation of microstructural evolution in thermo-mechanical processing of steel plates[J]. ISIJ International, 1992,32(3): 414-422.
  • 10GAMSJAGER E, ANTRETTER T, SCHMARANZER C, et al. Diffusional phase transformation and deformation in steels[J]. Computational Materials Science, 2002, 25: 92-99.

共引文献27

同被引文献50

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部