期刊文献+

AMERICAN OPTION PRICING UNDER GARCH DIFFUSION MODEL: AN EMPIRICAL STUDY 被引量:2

AMERICAN OPTION PRICING UNDER GARCH DIFFUSION MODEL: AN EMPIRICAL STUDY
原文传递
导出
摘要 The GARCH diffusion model has received much attention in recent years, as it describes financial time series better when compared to many other models. In this paper, the authors study the empirical performance of American option pricing model when the underlying asset follows the GARCH diffusion. The parameters of the GARCH diffusion model are estimated by the efficient importance sampling-based maximum likelihood (EIS-ML) method. Then the least-squares Monte Carlo (LSMC) method is introduced to price American options. Empirical pricing results on American put options in Hong Kong stock market shows that the GARCH diffusion model outperforms the classical constant volatility (CV) model significantly.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期193-207,共15页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundations of China under Grant No.71201013 the National Science Fund for Distinguished Young Scholars of China under Grant No.70825006 the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0916 the National Natural Science Innovation Research Group of China under Grant No.71221001
关键词 American option efficient importance sampling GARCH diffusion model least-squaresMonte Carlo maximum likelihood. GARCH模型 期权定价模型 扩散模型 美式期权 金融时间序列 重要性采样 估计方法 最大似然
  • 相关文献

参考文献33

  • 1Black F and Scholes M, The pricing of options and corporate liabilities, Journal o] Political Economy, 1973, 81(3): 637-654.
  • 2Hull J C and White A D, The pricing of options on asset with stochastic volatilities, Journal of Finance, 1987, 42(2): 281--300.
  • 3Heston S L, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 1993, 6(2): 327-343.
  • 4Andersen T G, Benzoni L, and Lund J, Estimating jump-diffusions for equity returns, Journal of Finance, 2002, 57: 1239-1284.
  • 5Chacko G and Viceira L, Spectral GMM estimation of continuoustime processes, Journal of Econometrics, 2003, 116: :259-292.
  • 6Chernov M, Gallant A R, Ghysels E, et al., Alternative models for stock price dynamics, Journal of Econometrics, 2003, 116: 225-257.
  • 7Jones C, The dynamics of stochastic volatility: Evidence from underlying and options markets, Journal of Econometrics, 2003, 116: 181-224.
  • 8Ait-Sahalia Y and Kimmel R, Maximum likelihood estimation of stochastic volatility models, Journal of Financial Economics, 2007, 83: 413-452.
  • 9Nelson D B, ARCH models as diffusion approximations, Journal of Econometrics, 1990, 45: 7-38.
  • 10Lewis A L, Option Valuation Under Stochastic Volatility, Finance Press, California, 2000.

同被引文献3

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部