期刊文献+

支持向量机和神经网络在粗糙面参数反演中的比较 被引量:7

Support Vector Machine and Neural Network in Inversion of Rough Surface Parameters
下载PDF
导出
摘要 首先介绍支持向量机和神经网络方法及其在内部网络训练上的不同.分别利用支持向量机和神经网络对高斯粗糙面的均方根高度和相关长度进行反演.通过仿真结果和误差对比分析,发现在小样本情况下,支持向量机的反演结果比神经网络好,而在具有大量样本的情况下,神经网络的反演精度有显著提高,而且反演时间比支持向量机少很多. Support vector machine and neural network theory and internal network training differences of them are studied. Root mean square height and correlation length of Gauss rough surface are inversed by support vector machine and neural network, respectively. Simulation results and inversing errors show that in the case of small numbers of rough surface sample inversion of support vector machine are better than that of neural network, while in the case of sufficient numbers of rough surface samples inversion accuracy of neural network increases and time of inversion by neural network is much less than that of support vector machine.
出处 《计算物理》 CSCD 北大核心 2014年第1期75-84,共10页 Chinese Journal of Computational Physics
基金 国家杰出青年科学基金(61225002) 高等学校博士学科点专项科研基金(20100203110016)资助项目
关键词 支持向量机 粗糙面 神经网络 均方根高度 相关长度 反演 support vector machine rough surface neural network root mean square height correlation length inversion
  • 相关文献

参考文献21

  • 1Burkholder R J,Pion M R,Obelleiro F. A Monte Carlo study of rough sea surface influence on the radar scattering from 2-D ships[J].IEEE Transaction on Antennas and Propagation Magazine,2001,(02):25-32.
  • 2Johnson J T. A Numerical study of scattering from an object above a rough surface[J].IEEE Transactions on Antennas and Propation,2002,(10):1361-1367.
  • 3杨峰,聂在平,张业荣.用修正玻昂迭代法重建复杂介质结构[J].电波科学学报,1998,13(1):47-51. 被引量:9
  • 4Keren D,Osadchy M,Gotsman C. Antifaces:A novel,fast method for image detection[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2001.747-761.
  • 5Guo G D,Jain A K,Ma W Y. Learning similarity measure for natural image retrieval with relevance feedback[J].IEEE Transactions on Neural Networks,2002.811-820.
  • 6张莉,周伟达,焦李成.用于一维图像识别的支撑矢量机方法[J].红外与毫米波学报,2002,21(2):119-123. 被引量:16
  • 7袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别[J].电子学报,2004,32(12):2078-2081. 被引量:33
  • 8Vapnik V N. The nature of statistical learning theory[M].NY:Springer Verlag,1995.
  • 9葛哲学;孙志强.神经网络理论与MATLAB R2007实现[M]北京:电子工业出版社,2007.
  • 10朱树先,张仁杰,郑刚.基于RBF神经网络的人脸识别[J].光学仪器,2008,30(2):31-33. 被引量:6

二级参考文献67

共引文献110

同被引文献68

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部