期刊文献+

深度学习在航拍场景分类中的应用 被引量:9

Aerial Images Categorization with Deep Learning
下载PDF
导出
摘要 最近几十年来,航拍图片和视频在城市规划、沿海地区监视、军事任务等方面都得到了广泛的运用。因而了解航拍图片中所包含的内容,研究航拍视频所拍摄的场景类型就显得异常重要。目前流行的场景分类算法大多是针对自然场景的,很少有针对高分辨率航拍场景分类的算法。针对高分辨率航拍图片的场景分类给出了一种分层式算法。该算法首先用尺度不变特征转换(scale-invariant feature transform,SIFT)算法提取鲁棒的块局部特征,然后在视觉词袋的基础上,用经局限型波兹曼模型(restricted Boltzmann machine,RBM)初始化的深层信念网络(deep belief network,DBN)来表示低层特征与高层视频特征之间的关系;同时深层信念网络也起到了分类器的作用。实验结果表明,该算法在处理高分辨率航拍图片场景分类问题时都要略好于目前主流算法。 In recent decades, aerial image/video processing has been widely studied for urban planning, coastal mon- itoring and military tasks. Therefore, understanding the contents contained in aerial images and studying the scene classification of aerial videos are very important. However, currently most popular scene classification algorithms are mainly for natural scenes, rarely for high resolution aerial scene classification. This paper proposes a hierarchical scene classification model for aerial videos/images. Firstly, the scale-invariant feature transform (SIFT) vector is extracted as the patch feature. Then, on the basis of utilizing bag of words, the deep belief network (DBN) initialized by restricted Boltzmann machine (RBM) is used to obtain the latent variables which describe the relationship between low-level region features and high-level global features. The DBN also plays as a classifier. The proposed method achieves promising performance compared with the state of art scene classification methods.
出处 《计算机科学与探索》 CSCD 2014年第3期305-312,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61005016 国家重点基础研究发展计划(973计划)No.2010CB327902~~
关键词 航拍 场景分类 视觉词袋 深度学习 高分辨率 aerial image scene classification bags of feature deep learning high resolution
  • 相关文献

同被引文献80

  • 1Mohamed A, Dahl G, I-Iinton G. Acoustic modeling using deep belief networks[ J ]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(1) : 14-22.
  • 2Hanlin Goh, Nicolas Thome, Matthieu Cord. Biasing restricted bolt- zmann machines to manipulate latent selectivity and sparsity [ C ]// NIPS workshop on deep learning and unsuperdsed feature learning. 2010.
  • 3Luo Heng, Shen Ruimin, Niu Changyong, et al. Sparse group re- stricted boltzmann machines [ C ]// Proceedings of the National Con- ference on Artificial Intelligence. San Francisco: AAAI, 2011: 429-434.
  • 4Andrew Maas, Awni Harlnun, Andrew Ng. Rectifier nonlinearities improve neural network acoustic models [ C 3// Proceedings of the 30th International Conference on Machine Learning. Atlanta : JMLR, 2013.
  • 5Senior A, Xin Lei. Fine context, low-rank, softplus deep neural networks for mobile speech recognition[ C]//2014 IEEE Internation- al Conference on Acoustics, Speech and Signal Processing. Florence: ICASSP, 2014: 7644-7648.
  • 6Ranzato M, Hinton G. Modeling pixel means and covariances using factorized third-order boltzmann machines [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010: 2551-2558.
  • 7Courville A, Bergstra J, Bengio Y. Unsupervised models of images by spike-and-slab RBMs [ C ]// Proceedings of the 28th International Conference on Machine Learning. Bellevue : ICML, 2011 : 1145-1152.
  • 8H Lee, R Grosse, R Ranganath, et al. Unsupervised learning of hi- erarchical representations with convolutional deep belief networks [ J 1. Communications of the ACM, 2011,54 (10) : 95-103.
  • 9Gunasekar S,Ghosh J,Bovik A.Face Detection on Distorted Images Augmented by Perceptual Quality Aware Features[J].IEEE transactions on information forensics and security,2014,9(12):2119-2131.
  • 10Usui H,Tanabe J,Sano T,et al.An evaluation of an energy efficient many-core SoC with parallelized face detection[C]//ASP-DAC.2014:311-316.

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部