摘要
研究了一类定义在(-∞,∞)上带有常系数的微分算子.应用嵌入定理,给出了一些空间范数的等价性,结合Fourier变换,证明了这类微分算式产生的算子的自共轭扩张都具有相同的本质谱,进而给出了本质谱的分布范围.
A kind of differential operators generated by the differential expression on an interval (--∞,∞) with constant coefficients is considered. The equivalent property of norms between dif- ferent spaces has been got by using the corresponding embedding theorems. Then, applying Fourier transform,it is proved that all self-adjoint extensions of the operator considered have the same essential spectrum, and the distribution of essential spectrum is obtained.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第2期125-129,共5页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金项目(11161030)
关键词
微分算子
常系数
本质谱
differential operator
constant coefficient
essential spectrum