期刊文献+

FICA-IPNN集合型滚动轴承故障诊断方法 被引量:4

FICA-IPNN ensemble fault diagnosis approach of rolling bearing
下载PDF
导出
摘要 为了提高滚动轴承故障诊断的准确性和适应性,提出快速独立成分分析(fast independent component analysis,FICA)和增量概率神经网络(incremental probabilistic neural network,IPNN)相结合的FICA-IPNN集合型滚动轴承故障诊断方法。首先,针对滚动轴承的故障振动信号非高斯特点,利用固定点迭代的FICA算法提取出滚动轴承振动信号特征,其次,为了提高概率神经网络分类的适应性,采用在线增量方法,优化概率神经网络结构,训练概率神经网络参数。实验表明,该集合型故障诊断方法较传统概率神经网络有更高的分类准确性和适应性。 An ensemble approach based on fast independent component analysis (FICA) and incremental probabilistic neural network, called FICA-IPNN, was proposed to improve the accuracy and adaptability of rolling bearing fault diagnosis. Firstly, the feature of the vibration signals of the rolling bearing, usually non-Gaussian, was extracted by the fixed-point iteration FICA algorithm. Then the online incremental method was adopted to optimize the probabilistic neural network structure and train probabilistic neural network parameters to improve the classification adaptability of probabilistic neural network. The experimental results show that the accuracy and adaptability of classification by FICA-IPNN are better than that of traditional probabilistic neural network.
出处 《电机与控制学报》 EI CSCD 北大核心 2014年第3期73-78,共6页 Electric Machines and Control
基金 国家自然科学基金(60974070) 辽宁省科学技术计划项目(2010222005)
关键词 故障诊断 快速独立成分分析 增量概率神经网络 特征提取 滚动轴承 fault diagnosis fast independent component analysis incremental probabilistic neural network feature extract rolling element bearing
  • 相关文献

参考文献22

  • 1SCHOEN R R, HABETLER T G, KAMRAN F, et al. Motor beating damage detection using stator current monitoring [ J 1. IEEE Transactions on Industry Applications, 1995, 31 (6) : 1274 - 1279.
  • 2MOOSAVIAN A, AHMADI H, TABATABAEEFAR A. Fault di- agnosis of main engine journal bearing based on vibration analysis using Fisher linear discriminant, K-nearest neighbor and support vector macbine[J~. Journal of Vibroengineering, 2012, 14(2) : 894 - 906.
  • 3张雄希,刘振兴.共振解调与小波降噪在电机故障诊断中的应用[J].电机与控制学报,2010,14(6):66-70. 被引量:18
  • 4STAROSTIN N P, KONDAKOV A S, VASILIEVA M A. Identifi- cation of friction heat generation in sliding bearing by temperature data[ J]. Inverse Problems in Science and Engineering, 2013, 21 (2) : 298 -313.
  • 5孙斌,王艳武,杨立.基于红外测温的异步电机轴承故障诊断[J].电机与控制学报,2012,16(1):50-55. 被引量:19
  • 6陈志雄,左洪福,詹志娟,张营,孙见忠,蔡景.轴承钢摩擦副全流量在线磨粒静电监测方法[J].航空动力学报,2012,27(5):1096-1104. 被引量:8
  • 7马辉,李辉,唐玉生,闻邦椿.两种不同载荷形式下转子系统油膜失稳的数值研究[J].振动工程学报,2013,26(1):105-111. 被引量:5
  • 8PANDYA D H, UPADHYAY S H, HARSHA S P. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN[ J 1- Expert Systems with Applica- tions, 2013, 40(10): 4137-4145.
  • 9SUN W X, CHEN J, L1 J Q. Decision tree and PCA-based fault diagnosis of rotating machinery [ J ]. Mechanical Systems and Sig- nal Processing, 2007, 21 (3) : 1300 - 1317.
  • 10GUO Q J, YU H B, NIE Y Y, et al. Joint time-frequency and kernel principal component based SOM for machine maintenance [ C l//3rd International Symposium on Neural Networks, ISNN 2006-Advances in Neural Networks, May 28 - Junel, 2006, Chengdu, China. 2006 : 1144 - 1154.

二级参考文献86

共引文献137

同被引文献42

  • 1樊立萍,徐阳.基于KPCA的污水处理过程监视[J].仪器仪表学报,2005,26(z1):157-158. 被引量:2
  • 2张超,陈建军.基于EMD降噪和谱峭度的轴承故障诊断方法[J].机械科学与技术,2015,34(2):252-256. 被引量:21
  • 3陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择[J].系统仿真学报,2007,19(11):2527-2529. 被引量:104
  • 4Yoo C K, Lee I B. Nonlinear multivariate ltering and biopro- cess monitoring for supervising nonlinear biological processes [ J ]. Process Biochemistry, 2006,41 (8) : 1854 - 1863.
  • 5Choi S W, Lee I B. Nonlinear dynamic processmonitoring based on dynamic kernel PCA [ J ]. Chemical Engineering Science ,2004,59 ( 24 ) :5897 - 5908.
  • 6Zhu Z B, Song Z H, Palazoglu A. Process pattern construction and multi-mode monitoring [ J ]. Journal of Process Control, 2012,22( 1 ) :247 - 262.
  • 7Huang N, E, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ C ]//Proceedings of The Rey- al Society. 1998,454:903 - 995.
  • 8Chiu S L. Fuzzy model identification based on cluster estima- tion [ J ]. Journal of Intelligent & Fuzzy Systems, 1994,2 ( 3 ).
  • 9Bezdek J C. Pattern Recognition with Fuzzy Objective Func- tion Algorithms [ M ]. New York : Plenum Press, 1981.
  • 10Alex J, Benedetti L, Copp J, et al. Benchmark Simulation Model no. 1 ( BSM1 ) [R]. Dept. of Industrial Electrical En- gineering and Automation, Lund University ,2008.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部